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ABSTRACT 

Four microalgae, obtained from different brackish and fresh water sources within the state of 

Louisiana‘s Southeast region, were evaluated for their potential use in the production of biodiesel. The 

microorganisms were isolated and identified using genomic DNA, and 16S rRNA or 18S rRNA gene 

amplification followed by sequencing. The resultant sequences were compared with those available on 

the NCBI website database through the BLAST bioinformatic tool. The results showed high correlation 

with known nucleotide sequence identities at 99 % with Synechococcus sp., 98 % with Sellaphora 

pupula, 99 % with Chlorella sorokiniana, 99 % with Scenedesmus abundans, and 99 % with Chlorella 

vulgaris (control).  

  The fatty acid profiles of the identified organisms grown using 5 % CO2 aeration into the growth 

media were evaluated and were found to be different to the control group (0.037 % CO2). In 

Synechococcus sp., total fatty acids (TFA) decreased from 20.63 g kg
-1

 to 17.62 g kg
-1 

dry biomass with 

the appearance of C18:2 and C18:3, which were absent in the control. TFA from Sellaphora pupula 

decreased from 54.8 g kg
-1

 to 24.4 g kg
-1 

dry biomass and contained the greatest C16:1. The extracted 

TFA from Scenedesmus abundans increased from 14.14 g kg
-1

 to 31.63 g kg
-1

 and displayed the highest 

content of C18:1. For Chlorella vulgaris UTEX 259, TFA content increased from 15.14 g kg
-1 

to 47.83 g 

kg
-1

, and 50 % of that total was C18:3. The TFA content from Chlorella sorokiniana decreased from 

29.82 g kg
-1

 to 23.99 g kg
-1

; however, it had a lower C18:3 which allowed for a balanced fatty acid 

profile in terms of cetane number, oxidative stability, viscosity and low temperature conditions. The 

aforementioned conditions, plus owning the best biomass productivity when using 5 % CO2, deemed 

Chlorella sorokiniana as the best candidate of the strains evaluated for the production of biodiesel. 

 

 

Keywords: microalgae• biodiesel• fatty acid methyl esters• carbon dioxide• Chlorella sorokiniana 
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1. LITERATURE REVIEW 

1.1. Introduction 

The rising need for energy in developing nations is giving place to vehement competition 

for the world‘s decreasing energy resources (Pienkos and Darzins, 2009). The increased use of 

fossil fuels results in larger greenhouse gases (GHG) emissions, and this is usually considered 

the main reason for global climate change (Wuebbles and Atul, 2001). Fossil fuels are the largest 

contributor of GHGs to the atmosphere (EIA, 2006). With the increase in anthropogenic GHG 

emissions due to the extensive use of fossil fuels for transport, new techniques for the 

development of electricity and thermal energy generation are needed (Brennan and Owende, 

2010). The goal of a 5.2 % reduction in GHG emissions worldwide from 1990 values was 

proposed during The Kyoto Protocol back in 1997 (Wang et al., 2008).  One hundred and ninety-

three countries are currently part of this protocol, with the United States being the only 

remaining signatory nation that has not ratified it (Status of ratification of Kyoto Protocol, 2011). 

Greater use of biofuels, which compete and have partially displaced petroleum based fuels for 

use in transportation, could help meet that reduction in emissions objective (Macedo et al., 

2008).  

In terms of CO2 reduction, first generation biofuels are said to have a limited performance 

and demand the use of large amounts of land (Schubert, 2006) and have now reached economic 

levels of production. Examples are food and oil crops (e.g. biodiesel from rapeseed oil, and 

ethanol from sugarcane, sugar beet, and corn) (FAO, 2008) as well as animal fats (FAO, 2007). 

Strong controversy surrounds the use of first generation biofuels, usually due to their negative 

impacts like contributing to the increase in food prices, deforestation and biodiversity losses, 
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hence, the extent of their ultimate contribution  to the reduction of GHG is frequently questioned 

(Gomez et al., 2011). 

  Second generation biofuels are produced from lignocellulosic biomass (e.g. agricultural 

waste products, forest residues, municipal waste) (Aita and Kim, 2010). Technologies for the 

conversion of lignocellulosic biomass into biofuels have yet to reach the scales for 

commercialization (FAO, 2008). In order for a biofuel resource to be technically and 

economically viable, it needs to compete with petroleum fuels‘ prices, improve air quality (e.g. 

through CO2 sequestration)   and require low usage of water and land (Khosla, 2009). 

Microalgae are projected to be the source for the third generation of biofuels (Vieira 

Costa and Greque de Morais, 2011). High biomass productivity, accumulation of up to 20-50 % 

(w/w dry weight) triacylglycerols, the lack of requirement for high quality agricultural land and 

water renewal when compared to terrestrial crops are among the advantages to be offered by 

microalgae (Singh and Gu, 2010; Scott et al., 2010). Despite those advantages, several intrinsic 

and applied research and development obstacles need to be addressed for the commercialization 

of algal-based fuels at a cost that can compete with that of petroleum-based fuels (Pienkos and 

Darzins, 2009).  

Like plants and some photosynthetic bacteria, algae are photosynthetic organisms, which 

efficiently utilize energy from the sun to convert water, CO2 and O2 into biomass (Sheehan et al., 

1998). The most comprehensive research effort regarding the production of fuels from algae has 

been the ―The Aquatic Species Program (ASP)‖ led by the Department of Energy (DOE) from 

1978 to 1996. DOE invested approximately $25 million to study a variety of aquatic species such 

as macroalgae, cattails and microalgae for use in renewable energy production, and several 

important advances in the technology arose from this effort (Sheehan et al., 1998). 
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   Microalgae are photosynthetic organisms which can be prokaryotic or eukaryotic and 

can grow in a wide range of environmental conditions (Mata et al., 2010). Microalgae produce 

lipids in the form of triacylglycerols or triglycerides (Sheehan et al., 1998). These triglycerides 

can be reacted with an alcohol in a reaction called transesterification or alcoholysis (Figure 1.1) 

to obtain fatty acid methyl or ethyl esters for the production of biodiesel (Gouveia and Oliveira, 

2009).   

    Triglyceride               Methanol                                      Methyl Esters                    Glycerol 

   O                                                                                   O  

   ||                                                                                     ||  

CH2 - O - C - R1                                                           CH3 - O - C - R1  

 |  

 |               O                                                                                    O                            CH2 - OH  

 |               ||                                                                                      ||                              |  

CH  - O - C - R2       +    3 CH3OH                →           CH3 - O - C - R2              +    CH  - OH  

 |                                                                (Catalyst)                                                       |  

 |                O                                                                                    O                            CH2 - OH  

 |                ||                                                                                      ||  

CH2 - O - C - R3                                                            CH3 - O - C - R3  

 
Figure 1.1 Transesterification Reaction. 

1.2. Microalgae as a Source for Biodiesel 

The use of microalgae as fuel feedstock was first proposed over 50 years ago for the 

production of methane gas (Meier, 1955). Yields for biodiesel production from microalgae can 

be 10 to 20 times higher than those obtained from oleaginous seeds and/or vegetable oils (Table 

1.1). The oil content in some microalgae can be fairly high and can be induced to produce even 

higher concentrations of lipids through the implementation of low nitrogen media, varying Fe
3+

 

concentration and increased light intensity (Illman et al., 2000; Liu et al., 2007; Rodolfi et al., 

2007; Solovchenko et al., 2008; Tornabene et al., 1983). CO2 removal from power plants through 

biofixation represents an interesting method for reducing GHG emissions and assisting in the 

increase of microalgal biomass, lipid and biodiesel yields (Wang et al., 2008).   
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Several different types of renewable fuels can be obtained from microalgae. Among 

those, we can include methane produced by anaerobic digestion of the algal biomass (Spolaore et 

al., 2006); biodiesel derived from microalgal oil (Roessler et al., 1994; Sawayama et al., 1995; 

Dunahay et al., 1996; Sheehan et al., 1998; Banerjee et al., 2002; Gavrilescu and Chisti, 2005); 

and biohydrogen which can be produced photobiologically (Ghirardi et al., 2000; Akkerman et 

al., 2002; Melis, 2002; Fedorov et al., 2005; Kapdan and Kargi, 2006). 

Some microalgae have also a convenient fatty acids profile for transesterification and an 

unsaponifiable fraction which allows for the production of biodiesel with high oxidation stability 

(Dote et al., 1994; Ginzburg, 1993; Milne et al., 1990; Minowa et al., 1995) and physical and 

fuel properties (e.g. density, viscosity, acid value, and heating value) which are comparable to 

those found in fossil diesel (Miao and Wu, 2006; Rana and Spada, 2007).   

Table 1.1. Comparison of some sources of biodiesel (Chisti, 2007).  

Crop                                                                          Oil yield (L 
  
ha

-1
) 

Corn                                                                                   172 

Soybean                                                                             446 

Canola                                                                             1,190 

Jatropha                                                                           1,892 

Coconut                                                                           2,689 

Palm                                                                                5,950 

*Microalgae
a
                                                               136,900 

*Microalgae
b
                                                                 58,700 

 

* Based on experimentally demonstrated biomass productivity in photobioreactors.  

a 70% oil (by wt) in biomass  

b 30% oil (by wt) in biomass  

 

Another advantage consists on the potential use of the residual biomass (mainly 

carbohydrate and protein), collected after the removal of the lipid component for the generation 

of energy, liquid or gaseous fuels, or higher value by-products (Figure 1.2) (Pienkos and Darzins, 

2009). When compared to fossil diesel, biodiesel has advantages in that it is renewable, 

biodegradable, and produces less SOx and particulate emissions when burned besides not 
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requiring engine modification for its usage (Sheehan et al., 1998). Microalgae can be an 

alternative option to produce fuels because of their versatility as biomass source. Microalgae 

have higher photosynthetic efficiency, higher biomass productivities, and faster growth rates 

than higher plants, as well as the highest CO2 fixation and O2 production rates, positioning 

microalgae as one of the Earth‘s most important renewable fuel crops (Campbell, 1997; Chisti, 

2007; Chisti, 2008). 

 

 

 

Figure 1.2. Algal Biomass Product Streams (Pienkos and Darzins, 2009). 

1.3. Photosynthesis in Microalgae 

Photosynthesis is a process where sunlight energy is used to convert CO2 into glucose and 

oxygen. In this process CO2 and light are converted into organic matter by photoautotrophs. 

Photosynthesis serves as a source of energy for metabolism and growth for basically all forms of 

life on Earth either in a direct or indirect way (Masojidek et al., 2004). Algae are photosynthetic, 
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non-vascular plants containing chlorophyll a as pigment (Vonshak and Maske, 1982). The 

chlorophyll a, functioning as the principal photochemically active compound, receives light in 

order for photosynthesis to occur. Hence, the content of this pigment in microalgae influences 

photosynthetic activity (MacIntyre et al., 2002). The concentration of this light harvesting 

pigment has an impact on biomass production in microalgae as well as on the accumulation of 

target products (Su et al., 2007).       

 Nearly half of the total photosynthesis taking place on Earth is associated with marine 

phytoplankton (Camacho et al., 2003).  Light availability is related to the growth and production 

performances of a photosynthetic organism. When grown in a photobioreactor, the amount of 

light absorbed by an algal cell depends on the incident flux on the particular cell, culture density, 

and cell pigmentation as well as on the photosynthesis-irradiance relationship (the P-I curve). 

The P-I curve helps predict the culture performance and understand the relationship between the 

growth observed and the amount of light received (Camacho et al., 2003).   

1.4. Microalgae Classification  

         The main groups of microalgae differ primarily in terms of pigment composition, 

biochemical constituents, ultrastructure, and life cycle. The groups include diatoms (Class 

Bacillariophyceae), green (Class Chlorophyceae), golden brown (Class Chrysophyceae), 

primnesiophytes (Class Prymnesiophyceae), eustagmatophytes (Class Eustagmatophyceae), and 

blue-green or cyanobacteria (Class Cyanophyceae) (Sheehan et al., 1998).  

1.4.1. Diatoms. Diatoms, with close to 100,000 known species,  are among the most common 

group of algae in existence  and  tend to dominate the phytoplankton in oceans, but are also 

commonly found in fresh and brackish water habitats (Sheehan et al., 1998). The golden-brown 

color is due to the presence of fucoxanthin and β-carotene which mask the green color 

chlorophyll a and chlorophyll c (Tomaselli, 2004). Two major groups of diatoms can be 
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distinguished: the pennates having bilateral symmetry and the centrals with radial symmetry 

(Tomaselli, 2004). The main storage compounds of diatoms are lipids and a β-1,3-linked 

carbohydrate known as chrysolaminarin.  Substantial amounts of polymerized silicate (Si) can be 

found in their cell walls (Sheehan et al., 1998). 

1.4.2. Green Algae. Members of this group are among the most common microalgae, especially 

in freshwater (Neenan, 1986). Approximately 8,000 species are estimated to be in existence 

(Sheehan et al., 1998). This group contains chlorophyll a and chlorophyll b and several 

carotenoids which can be synthesized under stress conditions and make the alga change in color 

(Tomaselli, 2004). Starch is their primary storage component. In certain species, however, N-

deficiency has been found to boost lipid accumulation (Sheehan et al., 1998). Higher plants are 

considered descendants of the green algae, and for that reason, have received more attention than 

other algal groups with Chlorella and Chlamydomonas being two commonly studied genera 

(Sheehan et al., 1998). 

1.4.3. Golden-Brown Algae. This group is also known as chrysophytes and shares similarities in 

biochemical and pigment composition with diatoms. Approximately 1,000 species are known, 

and are primarily present in freshwater habitats (Sheehan et al., 1998), especially in oligotrophic 

waters low in calcium (Tomaselli, 2004). Major carbon storage forms in this group are usually 

lipids and chrysolaminarin (Sheehan et al., 1998). 

1.4.4. Prymnesiophytes. They are also known as haptophytes.  Prymnesiophytes are constituted 

by approximately 500 species (Sheehan et al., 1998). They are mostly found in the oceans, and 

form a major part of marine phytoplankton (Tomaselli, 2004). Just like in diatoms and 

chrysophytes, fucoxanthin imparts a brown color to the cells, with both lipids and 

chrysolaminarin constituting the major storage products (Sheehan et al., 1998). Scales embedded 
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in a mucilage can be usually found covering the cells and these can sometimes be calcified 

(Tomaselli, 2004). 

1.4.5. Eustigmatophytes. This group encompasses a significant portion of the―picoplankton‖ 

(Sheehan et al., 1998). Eustigmatophytes include unicellular and coccoid organisms that produce 

a small number of zoospores and are mostly found in soil and fresh waters (Tomaselli, 2004).  

Nannochloropsis, a marine species within this class, is a source of polyunsaturated fatty acids 

with high amounts of eicosapentaenoic acid (Tomaselli, 2004). 

1.4.6. Cyanobacteria. Cyanobacteria are prokaryotic organisms that contain chlorophyll a 

(Tomaselli, 2004). The name of blue–green has been given because of the presence of 

phycocyanin and phycoerythrin which usually masks the chlorophyll pigmentation (Tomaselli, 

2004). They are similar to bacteria in that their cells lack a nucleus, chloroplasts, and also, have a 

different gene structure (Neenan et al., 1986; Sheehan et al., 1998). An estimated 2,000 species 

belong to this group. Some cyanobacteria are known to assimilate atmospheric nitrogen (N) thus 

eliminating the need to provide fixed N to the cells.  None of them have been found to produce 

significant quantities of lipid as storage (Sheehan et al., 1998). 

1.5. Growth Requirements of Microalgae  

The biochemical composition of microalgae can be affected by such factors as growth 

rate, environmental conditions, and life cycle (Richmond, 1986). Microalgal growth and 

chemical composition are mainly controlled by light, temperature, available carbon dioxide, pH, 

and nutrients (Tzovenis et al., 1997, Zhu et al., 1997). Other factors, such as salinity, can be of 

vital importance to some species (Chu et al., 1996). As for synergistic or symbiotic effects, 

association with bacteria can be beneficial to algae for growth. Azospirillum sp. is a known plant-

growth- promoting bacterium that aids in the growth and yields of many plants and can also 

promote the growth of several freshwater species belonging to the Chlorella genus (Bashan and 
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Levanony, 1990; Okon and La-bandera Gonzalez, 1994; Bashan and Holguin, 1997; Bashan et 

al., 2004). Increased nitrogen content, mass, length and yields have been shown in crops grown 

using strains of Azospirillum lipoferum (Govedarica et al., 1993; Govedarica et al., 1994; Favilli 

et al., 1993). Studies have found an accumulation of lipids with a greater variety of fatty acids 

when Azospirillum brasilense was co-immobilized in alginate beads in conjunction with certain 

Chlorella species (de-Bashan et al., 2002). 

1.5.1. Light. The use of monocultures is required in various microalgal applications and 

controlled cultivation systems. This requirement has favored the development of closed photo 

bioreactors (Barbosa et al., 2001). Efficient utilization of light is one of the major challenges in 

microalgal biotechnology, especially when an increase in the biomass yield is desired (Barbosa 

et al., 2001). Photoacclimation or photoadaptation is a process that controls the effect of light on 

the biochemical composition of photosynthetic algae. During this process, algal cells undergo 

changes in cell composition and alterations in their ultrastructural, biophysical and physiological 

properties can also be observed (Dubinsky et al., 1995). Lee and Lee (2001) showed that cell 

concentration on a Chlorella kessleri inoculum with a density of 10
5
 cells ml

-1 
increased to 1.6 x 

10
7
 cells ml

-1  
after three days of continuous light.  However, the total cell concentration in flasks 

with L/D (light/dark) lighting scheme was increased to 9.1 x 10
6
 cells ml

-1  
 during the same 

period, only 57 % of that under continuous illumination. This difference in cell concentration 

between the two lighting schemes was proportional to the duration of the light exposure. The 

reduction in cell biomass under L/D lighting scheme seemed to be caused by night biomass loss 

by respiration.  In one study using Chaetoceros sp. under a continuous photon flux of 125 µmol 

photons m
-2 

s
-1

, provided by either a Cool White (CW) or by Gro-Lux and Gro-Lux wide 

spectrum agricultural lamps (GRO and GRO/WS), the protein concentration was found to be 
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higher whereas lipids were lower at the end of the exponential growth compared to the stationary 

phase (Sanchez and Voltolina, 2006).  The concentration of proteins, however, remained 

consistently higher than other treatments with GRO lamps in both stages, possibly due to the 

―high emission of blue light‖. As for lipids, the highest yields were observed in algae grown 

using CW; whereas, algae grown using GRO/WS yielded the best carbohydrate production 

during both growth phases. 

1.5.2. Temperature. The effect temperature exerts on biochemical reactions and how it affects the 

biochemical composition of algae, makes temperature one of the most important environmental 

factors (Hu, 2004).  Renaud et al. (2002) evaluated the effect of temperature on fatty acid 

composition of four tropical Australian microalgal species (the diatom Chaetoceros sp. (CS256); 

two cryptomonads, Rhodomonas sp. (NT15) and Crytomonas sp. (CRFI01) and an unidentified 

prymnesiophyte (NT19) and in a commercially available Isochrysis sp. used as control. Results 

showed that the diatom Chaetoceros had the highest percentage of lipid (16.8 % dry weight) 

when cells were cultured at 25°C. However, Rhodomonas sp., Cryptomonas sp., NT19, and 

Isochrysis sp. had significantly higher amounts of lipids at 15.5, 12.7, 21.4, and 21.7 % dry 

weight, respectively, when grown at temperatures within the range of 27-30°C. The effect of 

temperature on fatty acid composition of Chaetoceros is summarized in Table 1.2. 

1.5.3. Carbon Dioxide and Organic Carbon Sources. Algae use carbon dioxide (CO2) as the 

source of carbon to synthesize organic compounds such as lipids. Since carbon demand and 

productivity increase proportionally, intensive mass culture of microalgae requires a vast source 

of CO2 (Neenan et al., 1986). Carbon dioxide is present in air at a very small concentration    

 (0.037 % by volume in dry air). On the marine diatom Chaetoceros wighamii, addition of CO2  

increased the protein content, lowered the concentration of carbohydrates, but had no significant 
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Table 1.2. Fatty acid composition of laboratory batch cultures of Chaetoceros sp. (CS256) grown 

at different temperatures (Renaud et al., 2002). 

 

       Temperature  (°C)                                                

                                                        25                   27               30                33                    35 

Saturated fatty acids     

12:0                                                – 
1
                    –                  –                  –                       – 

14:0                                               23.6
m,2

           22.3
m

           22.3
m

           23.8
m

             28.3n 

16:0                                                9.2                   8.6              8.9                8.7                 8.4 

17:0                                                 –                     –                  –                  –                     – 

18:0                                                0.7                  0.7               0.9               1.3                   0.9 

Sum%                                            33.5                31.6             32.1             33.8                38.2 

 

Monounsaturated 

 

16:ln-7                                           36.5
 m

             36.4
 m

          39.1
 m

          36.9
 m

            33.5
n 

18:1n-9                                            1.7                  1.4                1.4               1.9                1.8 

18:1n-7                                            1.2                  1.2                1.3               1.1                1.2 

Sum%                                            39.4                39.3              42.5              40.0             36.5 

 

Polyunsaturated 

 

16:2n-7                                          0.9                   1.2                 1.4                1.4                 1.8 

16:3n-4                                          2.6                   4.3                 3.9                4.2                 4.8 

16:4n-1                                          0.5                   0.7                 0.7                0.7                 0.7 

18:2n-6                                          0.4                   1.2                 1.1                1.3                  1.2 

18:3n-6                                          0.9                   0.6                 0.8                0.8                  1.0 

18:3n-3                                          0.5                   0.6                 0.4                0.5                  1.0 

18:4n-3                                          0.6                   0.4                 0.2                0.5                  0.3 

18:5n-3                                           –                      –                   –                   –                     – 

20:4n-6                                         4.1
 m

                4.5
 m

               4.0 
n
              3.6 

n
                2.7 

n
   

20:5n-3                                         8.0
 m

                6.7n                6.5 
n
              6.9 

n
                6.6 

n
   

22:5n-3                                           –                      –                    –                  –                      – 

22:6n-3                                          1.0                    0.6                0.4                0.4                   0.3 

Sum%                                           19.5                 20.8               19.0              19.8                20.4 

 

Data as mean percentage of total fatty acids; n=3 for flask cultures.  

1 ( – ) Indicates that fatty acid was less than 0.1% of total fatty acids. 

2 Different superscripts across a row (m to n) indicate significant difference between means 

(ANOVA, Tukey‘s test; P<0.05). 

 

effect on the lipid content (Castro and Tavano, 2005). As for microalgae grown on the 

heterotrophic mode, experiments using diverse sources such as molasses (containing 25 % 
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glucose, 25 % fructose and 30 % sucrose on average (Becker, 1994a), acetic acid, and 

hydrocarbons (such as n-heptadecane) have been performed and shown to work at different 

concentrations (Becker, 1994a). 

1.5.4. Nutrients.  Nutrients are inorganic or organic compounds other than carbon dioxide and 

water, used for growth whose presence in the cell is necessary for cellular function (Neenan et 

al., 1986). Some algae require specific organic compounds synthesized by other organisms. 

However, many algae require only inorganic nutrients, and it is likely that these algae could be 

used as feedstock for biomass fuel production. Limiting nutrients to algae are nitrogen, 

phosphorus, silica (for diatoms) and iron (Neenan et al., 1986).   

1.5.4.1. Nitrogen. After carbon, nitrogen (N) is the most important nutrient contributing to the 

production of biomass. The nitrogen content in the microalgal biomass can range from 1 % to 

more than 10 % and depending on its supply and availability, it can vary between different 

groups (e.g. low in diatoms) and within particular species (Grobbelaar, 2004). Discoloration of 

the cells is a frequent response to nitrogen limitation due to a decrease in chlorophyll content and 

an increase in carotenoids, as well as the accumulation of organic carbon compounds such as 

polysaccharides and certain oils like polyunsaturated fatty acids (PUFAs) (Becker, 1994b). 

Nitrogen is mostly supplied as nitrate, but often ammonia and urea are used, both displaying 

similar growth rates (Kaplan et al., 1986). Many microorganisms tend to prefer ammonia as a 

nitrogen source, and the assimilation of either nitrate or ammonia
 
is said to be related to the pH 

of the growth media (Hu, 2004). A drop on pH can be observed when ammonia is used as the 

only source of N, especially during active growth owing to the release of H+ ions (Grobbelaar, 

2004). An increase in pH is observed when nitrate is used as the only N source (Grobbelaar, 

2004). Ammonia loss due to volatilization is an important factor to be considered when deciding 
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whether to supply either one. Urea can be considered another attractive source of nitrogen. About 

42 % of the weight of urea is nitrogen; therefore, more material than that of ammonia has to be 

handled. Lin and Lin (2011) reported that the microalgae fed with a combination of urea and 

sodium nitrate had the highest ash-free dry biomass content with a yield of 4.15 ± 0.38 g L⁻1 
.  

The urea molecule contains a carbon atom as well as two nitrogen atoms. This carbon atom is 

released as CO2 when urea is utilized and presumably, it is available for photosynthetic 

assimilation (Neenan et al., 1986), therefore, urea has the potential of providing both the nitrogen 

and 1.5 to 10 % of the carbon requirement (Neenan et al., 1986).    

1.5.4.2. Phosphorus. Phosphorus is essential for growth in many cellular processes such as 

energy transfer and during the biosynthesis of nucleic acids. Orthophosphate is the preferred 

form in which it is provided to algae and its uptake is said to be energy dependant (Grobbelaar, 

2004). In spite of the fact that algal biomass contains less than 1 % phosphorous (P), it usually 

becomes one of the most important growth limiting factors in algal culture (Neenan, et al., 1986). 

This happens because P binds easily to other ions (e.g. carbonate and iron) resulting in its 

precipitation. The insolubility of the resulting phosphate makes this essential nutrient unavailable 

for algal uptake (Grobbelaar, 2004).  The supply of P also influences the composition of the 

produced biomass. Similar effects to the ones obtained in algae grown under nitrogen starvation, 

such as the tendency to accumulate large amount of lipids, with a decreased amount of proteins, 

chlorophyll and nucleic acids content have been reported on phosphate deficient cultures 

(Becker, 1994a).   

1.5.4.3. Other Macro, Micronutrients and Chelates. Sulfur, potassium, sodium, iron, magnesium, 

calcium and trace elements like boron, copper, manganese, zinc, molybdenum, cobalt, vanadium, 

and selenium are also important in algal nutrition (Grobbelaar, 2004). Silicon, present in the cell 
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walls of many algal groups, is an important component in diatoms where it constitutes an 

essential nutrient for their growth and production (Healy, 1973). Silicon limitation, which is 

prone to happen, can also lead to the accumulation of secondary metabolites, such as lipids 

(Grobbelaar, 2004). Experiments conducted with silicon-deficient cells of Cyclotella cryptic (a 

diatom species that accumulates lipids under non-growing conditions) indicated that lipid 

accumulation occurs as a function of both increased partitioning of newly photo-assimilated 

carbon into lipids and slow conversion of non-lipid compounds (Roessler, 1987). 

1.5.5. Salinity. Protein, lipids and carbohydrates seem slightly affected by a wide range of 

salinity for most microalgae species. However, in some species, increases in ash and lipid 

content were observed at higher salinity. Studies by Raghavan et al. (2008) indicated that for 

Chaetoceros calcitrans, in terms of growth and chemical composition, a salinity of 25 mM NaCl 

was optimum. This study also showed that at a salinity of 35 mM NaCl, carbohydrates were 

increased while lipids and protein decreased (Raghavan et al., 2008). Vasquez-Duhalt and 

Arredondo-Vega (1991) tested two strains of Botryococcus Braunii (Austin and Gottingen) 

under different NaCl concentrations. The protein content in the cell biomass of the Austin strain 

showed a decrease with increasing salinity. The effect was small in the case of the Austin and 

more pronounced in the Gottingen strain. Carbohydrate content of Austin strain cells was not 

affected by media NaCl concentrations up to 0.2 M. Higher concentrations of NaCl induced an 

increase in the carbohydrate content of cells. However, large standard deviations were reported 

(Vasquez-Duhalt and Arredondo, 1991). The lipid content in both strains was not affected by the 

salt concentration. This suggests that saline stress does not induce lipid accumulation in these 

organisms (Vasquez-Duhalt and Arredondo-Vega, 1991). Mishra and Jha (2009) found similar 

results on Dunaliella cultures harvested 20 days after inoculation and grown at different salt 
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concentrations. Salt induces osmotic pressure in the broth which causes the microorganisms to 

protect themselves from it by producing exopolysaccharides (EPSs) (Abbasi and Amiri, 2008). 

EPSs of 944 mg l 
-1 

 were obtained from Dunaliella grown in 5M NaCl relative to the 56 mg l 
-1 

 

observed in media containing 0.5 M NaCl (Mishra and Jha, 2009).  

Salinity can have an effect on growth rate along with other factors like temperature. 

Castro and Tavano (2005) observed that temperature had a significant effect on the growth of 

Chaetoceros wighamii under salinity of 25 mM, but not at 35 mM.  At 30°C, the growth rate was 

lower at 25 mM when no CO2 had been added.  Rao et al. (2006) identified a marginal increase 

in carbohydrate content at 17 mM and 34 mM salinity cultures with Botryococcus braunii. The 

total fat content of alga grown at different salinity varied from 24-28 % (w/w) compared to only 

20 % (w/w) for control without salts. The fatty acid profile indicated the presence of C16:0, 

C16:1, C18:0, C18:1, C18:2, C22:0, C22:1 and C24:0 fatty acids. Stearic and linoleic acids were 

higher in proportion in the control culture while palmitoleic and oleic acids were the major fatty 

acids for cultures grown in 34mM and 85mM salinity (Rao et al., 2006). 

1.6. Microalgae Identification 

1.6.1. Polymerase Chain Reaction. The polymerase chain reaction (PCR) is a powerful and 

sensitive technique which amplifies specific DNA sequences exponentially through a three-step 

process done in multiple cycles (Saiki et al., 1985). First, the double-stranded DNA template is 

denatured at a high temperature. Then, sequence-specific primers are annealed to the target 

sequence followed by the addition of a thermostable DNA polymerase, such as Taq DNA 

polymerase (Chien et al., 1976; Kaledin et al., 1980; Lawyer et al., 1993; Longley et al., 1990; 

Lyamichev et al., 1993). This enzyme is responsible for extending the annealed primers, and 

doubling the amount of the original DNA sequence. The new product then becomes an additional 

template for subsequent cycles of amplification. These three steps are usually repeated in cycles 
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for 20 to 30 times, resulting in an increase of target DNA concentration of 10
5
 to 10

9 
times the 

original amount. 

The use of PCR to obtain large amounts of a desired product can have both positive and 

negative aspects. If amplification is not successful, this can lead to the generation of many 

undesired products leading even to the exclusion of the target product (Roux, 1995). The 

opposite would be that no product may be amplified. In regards to optimization, several variables 

have been recognized to contribute to this effect (Saiki et al., 1988). Main optimization variables 

include magnesium (Mg
2+

) concentrations, buffer pH, and cycling conditions. Within cycling 

conditions, the annealing temperature is of utmost importance. The interdependence between 

variables adds difficulty to the situation. For instance, increasing  the amount of deoxynucleotide 

triphosphates (dNTPs) lowers the concentration of free Mg
2+

 available to exert an effect on 

polymerase function because dNTPs directly chelate a proportional number of Mg
2+

 ions (Roux,  

1995). 

1.6.2. Enhancing Agents. Several additives and enhancing agents such as  dimethyl sulfoxide 

(DMSO), N,N,N,-trimethylglycine (betaine), formamide, glycerol, non-ionic detergents, bovine 

serum albumin, polyethylene glycol and tetramethyl ammonium chloride can be included in PCR 

reactions with the aim of increasing yield, specificity and consistency (Frackman et al., 1998 ).   

Application of the Taguchi method (Taguchi, 1986), which focuses only on the main 

effects and two factor interactions,  can eliminate the need of a full multivariate matrix analysis 

for each of the variables tested, which can become a burdensome and costly task. With this 

method, the size of the matrix can be trimmed down significantly  and several key variables can 

be altered simultaneously (Cobb and Clarkson, 1994).  
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1.6.3.  Magnesium Concentration. Magnesium chloride serves as an essential co-factor for the 

DNA polymerase and optimization for every primer/template pair should always be attained 

(Kolmodin and Felton, 1997). Magnesium ion is closely bound to the phosphate-sugar backbone 

in nucleotides and nucleic acids; therefore, different amounts can have strong and complex 

effects on experiments on which nucleic acids take part (Blanchard et al., 1993). Because of the 

needed role of free magnesium as enzyme co-factor in PCR, its total ion concentration has to 

exceed the total dNTP concentration. Generally, magnesium ion‘s concentration varies in series 

of 1.5 - 4 mM with 0.5-mM step increments (Kolmodin and Felton, 1997).  

1.6.4. Amplification of 16S rRNA, 18S rRNA and Other Genes. 16s rRNA is the most 

commonly used genetic marker for the study of bacterial phylogeny and taxonomy (Janda and 

Abbott, 2007). Reasons for this include: (1) its presence in almost all bacteria as operons, (2) no 

change in 16s rRNA gene‘s function has been observed over time and, (3), the 16s rRNA gene‘s 

length (1,500 bp) is suitable for informatics purposes (Janda and Abbott, 2007). Erwin and 

Thacker (2008) characterized partial 16S rRNA  and the entire 16S- 23S internal transcribed 

spacer (ITS) sequences from Synechococcus spongiarum in an attempt to assess the phylogenetic 

utility of rRNA sequence data in resolving the phylogeny of sponge-associated bacteria. Their 

results showed that 16S rRNA sequences were highly conserved, exhibiting less than 1 % 

sequence divergence among symbiont clades; whereas, ITS gene sequences displayed a much 

higher variability than 16S rRNA sequences.     

In addition to molecular techniques based on PCR amplification targeting conserved 

regions inside the 16S rRNA gene (Komarek , 2006), other genes such as hetR (heterocyst 

differentiation control protein) (Han et al., 2009; Schleifer, 2009) and nifH, which encodes for 

nitrogenase reductase (Zehr and McReynolds, 1989; Janson et al., 1998), have also demonstrated 
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to have potential for phylogenetic discrimination. However, considering that several 

disagreements between traditional morphological classification and phylogenetic analysis still 

remain, the utilization of chemotaxonomic markers, such as lipids and their fatty acids, have 

been considered as complementary approaches since they provide data for taxonomic position 

assignment as well as some correlations with morphological properties of cyanobacteria 

(Galhano et al., 2011). In their study, Galhano et al. (2011) obtained molecular information 

regarding the 16S rRNA gene as well as the hetR and nifH genes from filamentous 

cyanobacterial strains isolated from two Portuguese freshwater ecosystems, a eutrophic shallow 

lake (genus Aphanizomenon) and rice fields (genera Anabaena and Nostoc). Features such as 

genotypic, morphological and biochemical attributes (fatty acid methyl ester profiles) were used 

for strain characterization. Their results showed that the unknown Aphanizomenon had 99 % 

similarity with 16S rDNA sequence with Aphanizomenon gracile 219 (isolated from a Danish 

lake), the unknown Anabaena had 99 % with Anabaena flosaquae PCC 7905 (type strain) and 99 

% similarity with Anabaena cylindrica NIES19. The unknown Nostoc showed 98 % 16S rDNA 

sequence similarity with Nostoc sp. 8938 and Nostoc muscorum I. The hetR gene fragments with 

approximately 450 bp showed 97 % similarity with Aphanizomenon sp. TR183 and 98 % 

similarity with Anabaena flos-aquae SAG 30.87; whereas, a 100 % similarity was seen with 

Nostoc PCC 7906. The sequence of the nifH gene fragment (319 bp) of the unknown 

Aphanizomenon  had high similarity (98 %) with a nitrogenase reductase sequence of an 

uncultured cyanobacterium clone Gt1463 and a different strain‘s nifH partial sequence showed 

high similarity (99 %) with Nostoc muscorum CC1090A1; whereas, the Anabaena’s strain‘s nifH 

partial sequence had similarities of 99 and 100 % with the partial nitrogenase reductase gene 
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sequences of a freshwater strain of Anabaena oscillarioides and Anabaena cylindrica UTEX 

B629, respectively (Galhano et al., 2001).  

Considered one of the most important molecular markers, 18s rRNA is a gene used in 

several applications among which molecular phylogenetic analyses and biodiversity screening 

can be included (Meyer et al., 2010). Buchheim et al., 1990, 1996, 1997, have conducted 

phylogenetic studies using 18S rRNA gene which have demonstrated significant diversity within 

the green algal genus Chlamydomonas. Armbrust et al. (2001) used 18S primers to amplify the 

18S rRNA genes from three closely related centric diatoms. Degenerate PCR primers were 

designed and used to amplify a portion of Sig1 (sexually induced gene 1), a gene strongly 

upregulated during sexual reproduction in the centric diatom Thalassiosira weissflogii. This gene 

has been hypothesized to encode a protein involved in the gamete recognition in three closely 

related species of the cosmopolitan genus Thalassiosira sp., oceanica, guillardii, and 

pseudonana. In their study, identification of Sig1 facilitated the development of this gene as a 

molecular marker for diatom sexual events and how these events affect diatom speciation and 

population dynamics.  

 Kaczmarska et al. (2005) amplified the small subunit rDNA (SSU rDNA) gene from the 

domoic acid-producing diatom Pseudo-nitzschia multiseries by PCR using the primer pair 27F 

and 1492R. Isolation and identification of bacteria associated with the P. multiseries clones and 

sub-clones to the closest characterized bacterium was done using the Ribosomal Database 

Project II. Their results showed that five of the eight bacterial strains belonged to the 

Alphaproteobacteria; whereas, the remaining bacteria were related to the Gammaproteobacteria 

and the bacteroides. Additionally, BLAST analysis of some of the above mentioned bacterial 

strains showed that they shared their highest SSU rRNA gene sequence identities (99.1, 99.0, 
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93.9 and 99.0 %, respectively) with the bacteria affiliated to Stappia (AY258082), Sulfitobacter 

(AY258079 and AJ534214), Flexibacter (AY258133) and Sphingomonas (AY258097). BLAST 

(Basic Local Alignment Search Tool) is a bioinformatic tool that helps identify members of gene 

families by finding regions of local similarity between sequences and by comparing nucleotide 

or protein sequences to sequence databases. Statistical significances are calculated for those 

matches (http:// www.ncbi.nlm.nih.gov/blast/). A method described by Rasoul-Amini et al. 

(2009) used DNA extraction and PCR amplification of the 18S rRNA gene to obtain sequences 

on 12 microalgae species belonging to the class Chlorophyceae. Bioinformatic tools (BLAST) 

were also used. The results of PCR products BLASTed with other sequenced microalgae in 

NCBI showed similarity to the 18S small subunit rRNA of other microalgae at 99-100 %.  

1.7. Microalgae Lipid Content 

Lipids are extractable to non-polar solvents (e.g. ether, chloroform, alkanes). This 

definition includes not only the triglycerides (triesters of fatty acids and glycerol), but compound 

lipids (e.g. phospholipids, glycolipids), steroids, chlorophylls, carotenoids, and hydrocarbons as 

well (Benemann and Weissman, 1984). The main phospholipids in algae are 

phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, 

phosphatidylglycerol, phosphatidic acid, and diphosphatidytil glycerol (Pohl, 1982). The major 

algal glycolipids are monogalactosyldyglyceride, digalactosyldiglyceride, and 

sulphoquinovosyldiglyceride (Pohl, 1982). A novel class of algal lipids are chlorosulpholipids 

which are derivatives of N-docosane-1,14-diol and of N-tetracosane-1,15-diol disulphates found 

in Chrysophyceae, Xanthophyceae, Chlorophyceae, and Cyanophyceae (Pohl, 1982).  

 Several reports exist on lipid production by microalgae, but the majority of this data refers only 

to fatty acids, most of which are C14 to C20 (Benemann and Weissman, 1984). Most of the fatty 

acids of algae are bound to the above lipids. In some algae, however, minor quantities of free 

http://www.ncbi.nlm.nih.gov/blast/
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fatty acids can be found. Larger amounts of even-numbered saturated fatty acids (12:0, 14:0, 

16:0,18:0) are primarily produced by algae, with only minor quantities of odd numbered fatty 

acids (13:0 to 19:0) [(Pohl, 1982)].   Small amounts of branched chain fatty acids have also been 

reported (Pohl, 1982).  Fatty acids with C12 to C22 carbon chains and 1 to 6 double bonds are 

predominant. These double bonds are usually in the cis- configuration being an exception trans-

3-(16:1) which is found in the phosphatidylglycerol of photosynthesizing algae. Different from 

bacteria and fungi, it seems apparent that algae do not synthesize fatty acids with unusual 

structures, such as acetylenic, hydroxyl, epoxy, oxo, cyclopropanoic, and cyclopropenoic acids 

(Pohl, 1982). The average lipid content in algae can range between 1 and 40 % dry weight 

(Becker, 1994b). However, numbers as high as 85 % dry weight can be achieved under certain 

conditions (Becker, 1994b). The lipid content of various species of microalgae is presented in 

Table 1.3. 

1.8. Goal of This Study 

The goal of this research was to compare different media and growth conditions for the 

isolation and identification of microalgal strains that are native to both Louisiana‘s fresh and 

brackish water bodies for their potential use in the alternative fuel industry. Selected strains were 

identified through genomic DNA in sequencing of the 16S rRNA and 18SrRNA genes. Lipid and 

fatty acid content were characterized and quantified post genomic identification. 

Table 1.3. Lipid content of some microalgae (Gouveia and Oliveira, 2009). Originally adapted 

from Becker (1994b); Illman et al. (2000); Liu et al. (2007); Miao and Wu. (2006); Natrah et al. 

(2008); Spolaore et al. (2006); Tornabene et al. (1983); and  Xiong et al. (2008). 

 

Species                                                                                Lipids (% dry matter) 

 

Scenedesmus obliquus                                                       11–22/35–55 
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(Table 1.3, continued) 

 

Scenedesmus dimorphus                                                    6–7/16–40 

Chlorella vulgaris                                                              14–40/56 

Chlorella emersonii                                                                63 

Chlorella protothecoides                                                     23/55 

Chlorella sorokiana                                                                22 

Chlorella minutissima                                                             57 

Dunaliella bioculata                                                                8 

Dunaliella salina                                                                 14–20 

Neochloris oleoabundans                                                    35–65 

Spirulina maxima                                                                  4–9 
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2. MATERIALS AND METHODS 

2.1. Sampling and Collection of Organisms 

Water samples were collected from sources at different locations (gulf, bays, lakes, 

bayous, ditches) within Louisiana‘s Southeast region with the aim of isolating and identifying 

algae as potential feedstock for the production of biodiesel. On April 17, 2010, water samples 

were taken from Dulotte Canal (Empire, LA), Bay Adams (Empire, LA), Myrtle Grove Marina 

(Port Sulphur, LA) and on May 18, 2010 from Magnolia ditch and End of Magnolia (Raceland, 

LA), Cocodrie Marina (Chauvin, LA), and Chacahoula ditch, Lake Palourde, Brownell 

Memorial‘s lake, and Adam‘s landing (Morgan City, LA) (Figure 2.1). Samples were stored at 

4°C. Salinities of water samples were analyzed by total conductivity and are depicted in Table 

2.1. 

 

 

  

Figure 2.1. Map of Sampling Locations. (Adapted from www.maps.com). 

 

2.2. Growth Conditions  

           Media for the isolation of algal strains were prepared by mixing filtered (55 mm, 

Whatman filters, Kent, United Kingdom) and sterilized natural brackish or freshwater (same 

source from where samples were taken) with either 50X Guillard‘s (F/2) (APPENDIX 1) marine 

Port Sulphur Chauvin 

Raceland Morgan City 
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water enrichment solution (Sigma-Aldrich, St. Louis, MO) for brackish water  or Chu‘s Media 

for freshwater samples. The Chu‘s Media contained 40 mg Ca (NO3), 0.8 mg FeCl3, 100 mg 

Table 2.1. Salinities of sampling locations through total conductivity. 

 

Location Salinity **(mg/L) 

Dulotte Canal 3,727 

Bay Adams 4,304 

Myrtle Grove 1,064 

Magnolia Ditch 58 

End of Magnolia 51 

Cocodrie Marina 3,317 

Chacahoula 53 

Lake Palourde 108 

Brownell Memorial 65 

Adam‘s Landing 93 

** The sum of chromatographic sodium, potassium, magnesium and calcium. 

 

K2HPO4, 250 mg MgSO4.7H2O, 20 mg Na2CO2, 25 mg NaSiO3• 9 H2O per liter. Petri plates of 

each medium were prepared containing 1.5 % w/w agar (Difco Bacterius Limited, Houston, 

Texas).  Supplemental Na2 SiO3• 9 H2O  w/v at 1 % using a stock solution containing 30 g L 
-1 

 

was added to F/2 enriched media at pH 7 to enhance the isolation of diatoms (Perez, 2006).   

2.3. Colony Selection  

One ml of each water sample (brackish or freshwater) was inoculated on both plates and 

into flasks containing 25 ml broth of each medium. Inoculated plates and flasks were placed in a 

Gyromax
TM 

777 incubator (Amerex Instruments Inc., Lafayette, CA) under continuous 

fluorescent lighting at 23 µmol photons m
-2 

s
-1 

measured using an LI-193 spherical quantum 

sensor along with a LI-1400 data logger (LI-COR, Lincoln, NE) at 30°C ± 2 and slow swirling 

(flasks only) at 80 RPM for 2 to 4 weeks. 
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2.4. Colony Homogenization  

Colonies were selected based on color differences and transferred to fresh agar plates. In 

the case of samples grown in liquid media, a 1 ml aliquot was transferred to agar plates and 

incubated under similar conditions for an additional 2 to 3 weeks. Homogenization and 

purification of isolated colonies were carried out through the inoculation of colonies on both 

Blue Green Media (BG-11) (APPENDIX 2) which favors blue greens and diatoms, and Bold‘s 

Basal Media (BBM) (APPENDIX 3) which favors green algae.  Microscopic observations at 

100X magnification with oil immersion (DC3-163 Microscope, National Optical and Scientific 

Instruments Inc., San Antonio, Texas) and serial dilution were made until a unialgal culture was 

obtained. 

2.5. Microorganism Selection and Harvesting 

Out of 17 isolates, four algae were selected for identification. Their selection was based 

on rapid growth, morphological and class diversity, and culture homogeneity. Based on 

morphological differences observed through microscopic analysis, they were tentatively 

identified as a cyanobacteria (N3) isolated from Cocodrie Marina, a diatom (FC2) isolated from 

a Chacahoula ditch and two green algae isolated from a Chacahoula ditch (FC1) and Dulotte 

Canal (D2), respectively (Figure 2.2). Chlorella vulgaris UTEX 259 (University of Texas 

Culture Collection of Algae, Austin, TX), provided by Dr. Misook Kim from the Audubon Sugar 

Institute (St. Gabriel, LA), was used as control during the identification process. N3 and FC2 

isolates were grown in 1 L flasks containing 800 ml of BG-11; whereas, FC1, D2, and Chlorella 

vulgaris were grown in BBM. Flasks were placed under continuous fluorescent lighting 20 µmol 

photons m
-2 

s
-1

 at 30°C with slow shaking at 80 RPM in a shaker incubator Gyromax 777 and 

harvested after 15 days by centrifugation (Sorvall RC-5 Superspeed Refrigerated Centrifuge, 

Dupont, England) at either 1,200 x g for N3 or 6,500 x g for FC2, FC1, D2 and Chlorella 
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vulgaris UTEX 259 at 4ºC.  Post harvest, 100 mg of wet cell biomass were washed with 100 mM 

Tris buffer (pH 7.5) and stored at -20°C. 

 

 

 

 

 

Figure 2.2. Tentatively Identified Microorganisms. FC2: diatom, N3: cyanobacteria, FC1 and 

D2: green algae. 

2.6. Genomic DNA Extraction 

  Frozen cells were thawed and genomic DNA extraction was performed using a Fast DNA 

Kit (MP Biomedicals, Solon, OH). Briefly, 1 ml of CLS-Y was added to each tube containing 

100 mg of wet cells and then transferred to a new set of tubes each containing a ball and garnet. 

Cells were processed using a FastPrep®-24 Instrument (MP Biomedicals) for 10 s at a speed 

setting of  5 m s
-1

, placed on ice for 1 h and then centrifuged for 15 min at 4°C at 15,700 x g 

(Hermle Z233 MK-2 High Speed Refrigerated Centrifuge, Hermle Labortechnik, Wehingen, 

Germany). After centrifuging, 600 µl of supernatant fluid was placed in a fresh tube and to that, 

600 µl of binding resin (guanidine thiocyanate at 60-70%, water at 10-20 % and silica at 10-20 

%) was added.  The mixture was thoroughly mixed and incubated for 5 min at 25ºC. Tubes were 

centrifuged for 1 min at 15,700 x g (Centrifuge 5415 D- Eppendorf, Hamburg, Germany) and 

after supernatant removal, 500 µl of SEWS solution was added to each tube, mixed, and 

centrifuged for 1 min, and then supernatants were discarded. To re-wash, another 500 µl of 

SEWS was added, mixed, centrifuged, supernatants removed again, and tubes were centrifuged 

for 10 s to remove any residual supernatants. To elute DNA from the resin, 100 µl of DES 
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solution was added and incubated for 3 min at 25°C. After incubation, DNA was collected by 

pipetting, centrifuged for 1 min at 15,700 x g, and supernatants were collected; an additional 

centrifugation was carried out to make certain no resin was present. Studies were conducted in 

duplicate. 

2.7. DNA Purification 

Ten µl of 3M sodium acetate solution (pH 5.2) and 275 µl of 95 % v/v ethanol were 

added to each sample‘s DNA, mixed by flipping and placed in dry ice for 15 min. The samples 

were then centrifuged for 15 min at 15,700 x g at 4°C (Hermle Z233 MK-2 High Speed 

Refrigerated Centrifuge) to remove the supernatant. The pellets were each washed once with 1 

ml of 95% v/v cold ethanol and centrifuged for 5-6 mins. After supernatants were discarded, 

DNA pellets were placed in an oven (Isotemp Vacuum Oven Model 280A, Fisher Scientific, 

Pittsburgh, PA) at 37°C for 10 min to dry under a vacuum of -25 inches of Hg. After drying, 80 

µl of TE buffer was added and the DNA concentration was determined with a ND-1000 

Spectrophotometer (Nanodrop, Wilmington, DE). Two readings were taken per sample (2 µl).  

2.8. Standard Polymerase Chain Reaction (PCR) and Optimization 

Nine different conditions were tested using a set of primers (Integrated DNA 

Technologies, Coralville, IA) for either a 16S rRNA gene (cyanobacteria), since this gene is 

better suited for prokaryotes, or an 18S rRNA gene (diatom and greens) which is a universal 

gene commonly used for the identification of eukaryotes (Table 2.2).  

          Three PCR master mixes were prepared using a Taq PCR Kit (New England Biolabs, 

Ipswich, MA).  The components of each PCR master mix are indicated in Table 2.3.  Dimethyl 

sulfoxide (DMSO) (Sigma-Aldrich, St. Louis, MO) and glycerol (Sigma-Aldrich, St. Louis, MO) 

were added to the second and third master mixes, respectively. Each mix was divided into three 

tubes of 80 µl and combined with 20 µl of three MgCl2 concentrations (15 mM, 30 mM and 45 



 

28 
 

mM) , resulting in a PCR reaction mixture with a final volume of 100 µl. The PCR reactions 

were performed on a thermocycler (PTC-100, MJ Research, Inc., Waltham, MA) using a 

program designed for the amplification of either 16S rRNA or 18S rRNA genes (Tables 2.4 and 

2.5). 

Table 2.2. 16S rRNA and 18S rRNA primers used for PCR reactions. 

          

                             a = Used for PCR amplification; b = Used for sequencing 

2.9. Gel Electrophoresis 

DNA quality and PCR products were determined using 0.8 % agarose cast gels 

(Genepure LE agarose, ISE Bioexpress, Kaysville, UT) on Tris-acetate-EDTA (TAE) buffer. 

Ethidium bromide was added to the gel mix to a final concentration of 0.2 µg/ml, and samples 

were mixed with 6X loading buffer (0.25 % w/v bromophenol blue and 40 % w/v sucrose). Ten 

µl of 2 log DNA ladder (0.1-10 kb, New England Biolabs) were loaded onto the agarose gel and 

the electrophoresis was run at 105 watts for 45 min (BRL-Model 250, Life Technologies, 

Carlsbad, CA). Bands were visualized with a UV lamp at a wavelength of 312 nm (UV Fotoprep 

I- Fotodyne Kodak, Rochester, NY). 

Primer Sequence 

16S rRNA     

16S bottoma 5'- AGAGTTTGATCMTGGCTC-3' 

16S top
a 5'-ACGGGCGGTGTG-3' 

16S bottom 2
b
 5‘-TTGGGCGTAAAGCGT-3‘ 

18S rRNA   

18S-Ca 5'-TGATCCTTCYGCAGGTTCAC-3 

18S-Da 5'-ACCTGGTTGATCCTGCCAG-3' 

18S C-2
 b
 5‘- ATTGGAGGGCAAGTCTGGT-3‘ 

18S D-2
 b
 5‘- ACTAAGAACGGCCATGCAC-3‘ 
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Table 2.3. Reaction volumes and concentrations for PCR master mixes. 

  Master Mixes*   

Component Volume  

Final 

Concentration 

  1 2 3   

        µl µl µl   

10X Mg-free buffer 40 40 40 1X 

Primer 1 (50 µM) 4 4 4 0.5 µM 

Primer 2 (50 µM) 4 4 4 0.5 µM 

Template (sample) X       X                          X 0.25 ng/µl 

dNTPs (10 mM) 8 8 8 0.2 mM 

Taq DNA (5U/µl) 2 2 2 0.025 U/µl 

DMSO (neat) 0 20 0 5% 

Glycerol (50%) 0 0 80 10% 

Nuclease Free Water (to a 

final volume of 320  µl) Y Y Y   

 

X= Amount of template required to reach final concentration. 

Y= Amount of Nuclease free water up to 320 µl.  

*Each master mix was divided into 3 tubes of 80 µl. Next, 20µl of a MgCl2 stock solution (Low 

(L)=15 mM, Medium (M)=30 mM, and High (H)=45 mM) was added to get the following 

combinations: 1L,1M 1H, 2L, 2M, 2H, 3L, 3M, and 3H . Final concentrations of MgCl2 were 

1.5, 3, and 4.5 mM for L, M, and H, respectively. 

 
Table 2.4. PCR cycle conditions for 16S rRNA. 

Initial Denaturation 95°C 30 s 

 

30 cycles 

95°C 

61°C 

68°C 

30 s 

1 min 

1 min 

Final Extension 68°C 5 min 

Hold 4°C ∞ 

 

 

Table 2.5. PCR cycle conditions for 18S rRNA. 

Initial Denaturation 95°C 30 s 

 

30 cycles 

95°C 

67°C 

72°C 

30 s 

1 min 

1 min 

   Final Extension 72°C 5 min 

           Hold 4°C ∞ 
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2.10. Gel Extraction and Purification 

Electrophoresis was conducted as previously described. DNA bands were visualized 

using a UV lamp and the gel bands excised using a clean glass cover slip and then placed in a 1.5 

ml microfuge tube. DNA was extracted using a QIAquick Gel Extraction Kit (Qiagen,Valencia, 

CA). Briefly, 1 ml of buffer QG was added to each microfuge tube and mixed by vortexing 

(VortexGenie 2-VWR, Radnor, PA) for 30 s.  The tubes were then incubated on a heating block 

(ISOTEMP 125D, Fisher Scientific, Pittsburg, PA) at 50°C for 10 min with vortexing for 2-3 s 

every 2 min. The contents of each tube were transferred to a QIAquick spin column (QIAquick 

Gel Extraction Kit) containing a silica membrane with a 10 kb cut-off and centrifuged at 15,700 

x g for 1 min. The DNA was bound to the membrane in the spin column. Buffer PE (750 µl) was 

used to wash each column followed by 1 min centrifugation. After the removal of supernatant 

columns were centrifuged once more to remove residual buffer PE, then they were placed into a 

new set of tubes and 25 µl of buffer  EB was added to elute the DNA. After 1 min, tubes were 

centrifuged for 1 min and the DNA concentration was measured with a ND-1000 

spectrophotometer and stored at 4°C. 

2.11. Cloning of PCR Products   

2.11.1. LB Agar Plates and Broth Media Preparation. Preceding the cloning reaction and 

transformation with chemically competent Escherichia coli (E. Coli) cells, plates containing 

Luria- Bertani (LB) (10g Tryptone, 5g Yeast extract, and 10g sodium chloride per liter) [(Fisher 

Scientific, Pittsburgh, PA)], with 1.5 % agar, and broth were prepared. Kanamycin to a final 

concentration of 50 µg/ml was added for the selection of transformant colonies.  

2.11.2. Colony Screening. Transformant colonies which were grown at 37ºC for 18 h were 

determined by blue/white screening by evenly distributing 50 µl of 2 % X-gal to each LB agar 
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plate containing kanamycin. Mostly white cells were observed which was indicative of positive 

cell transformation.  

2.11.3. Cloning Reaction and Transformation with Chemically Competent E. coli.  The TOPO 

TA Cloning Kit for sequencing with the plasmid vector PCR
®

 4-TOPO
® 

and one shot
®

-TOP 10 

chemically competent cells (Invitrogen, Carlsbad, CA) was used. Four µl of gel purified DNA 

from each sample was mixed with 1 µl of salt solution (containing 1.2 M NaCl and 0.06 M 

MgCl2 ) and 1 µl of TOPO vector (6 µl total reaction volume). After gentle mixing by tapping, 

the mixes were left to stand for 30 min at 25°C. Vials containing the chemically competent E. 

coli kept at -80°C were thawed on ice (~ 0°C) for 5 mins. After the 30 min incubation, 2 µl of the 

cloning reaction mix was transferred to the vial containing the E. coli competent cells, gently 

mixed by tapping 6-8 times and incubated on ice (~ 0°C) for 30 min. The vials were placed in a 

water bath (C76 Water Bath Shaker, New Brunswick Scientific, Edison, NJ) at 42°C for 30 s to 

produce a heat shock, and then immediately placed on ice followed by the addition of 250 µl of 

SOC medium. Vials were placed in a shaker incubator at 37°C for 1 h at 200 RPM. The contents 

of each vial were split and spread onto two LB agar plates containing kanamycin and x-gal, 

adding 80 % of the content to one plate and 20 % to the other one, and incubated overnight at 

37°C. After 18 h of incubation, three white colonies were selected from each sample. Each 

selected colony was grown overnight in 3 ml of LB broth containing 50 ug/ml kanamycin at 

37°C at 250 RPM.  

2.12. Purification of Plasmid DNA 

The QIAprep Spin Miniprep Kit (Qiagen, Valencia, CA) was used for the purification 

step. E. coli cells grown overnight were centrifuged for 3 min at 9,300 x g and the supernatant 

decanted. The pelleted bacterial cells were resuspended in 250 µl of buffer P1 (containing lyse-
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blue reagent which is used as a visual identification system to prevent handling errors), 

thoroughly mixed followed by the addition of 250 µl of buffer P2. Samples were mixed gently 

with lysis time not exceeding 5 min. Buffer N3 (350 µl) was added last and samples were 

centrifuged for 10 min at 15,700 x g. Centrifugates containing the plasmid DNA were then 

transferred to a column containing a 50 kb cut-off silica membrane and centrifuged for 1 min. 

Buffer PB (0.5 ml) was used to wash the columns and then centrifuged for 1 min.  All flow-

through material was discarded. This step was repeated twice to remove all supernatant fluid. 

The DNA was eluted by transferring the columns to new 1.5 ml tubes and adding 50 µl of EB 

buffer.  Columns were let stand for 1 min followed by centrifugation at 15,700 x g for 1 min. 

DNA concentration was determined as previously described. 

2.13. Restriction Enzyme Digestion 

EcoRI restriction enzyme and 10X EcoRI Buffer (New England Biolabs, Ipswich, MA) 

were used. Sample DNA  up to a maximum  amount of 800 ng was mixed with nuclease-free 

water up to a volume of 17.5 µl, followed by the addition of 2 µl of 10X Eco RI buffer and 0.5 µl 

of restriction enzyme in a 1.5 ml centrifuge tube. The contents were gently mixed by tapping. 

Sample tubes were incubated in a water bath at 37ºC for 2 h. The desired enzyme cleavage was 

confirmed by electrophoresis following the conditions previously described.  

2.14. Sequencing 

Plasmid DNA from each sample was sent out for sequencing to the GeneLab in the 

School of Veterinary Medicine at Louisiana State University, Baton Rouge, LA. Nucleotide 

sequences were determined by automated sequence analysis using a Perkin Elmer/ABI Prism 

3130  four capillary based DNA sequencer (Perkin Elmer, Foster City, CA) and Applied 

BioSystems BigDye Terminator version 3.1 (Perkin Elmer, Foster City, CA) and analyzed  using 

ABI Sequencing Analysis 5.3.1 software. The sequences obtained were compared against 
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sequences in the GenBank nucleotide collection through the Basic Local Alignment Search Tool 

(BLAST) available on the National Center for Biotechnology Information (NCBI) website 

(www.ncbi.nlm.nih.gov/). Sequencing was done twice from independent PCR runs to 

compensate for any Taq polymerase errors (Cline et al., 1996) that could have occurred during 

the PCR process. 

2.15. Lipid Characterization and Quantification   

2.15.1. Algae Inoculum Density. Cell counts for all seed cultures were determined by the use of 

an Improved Neubauer 0.1 mm Deep Bright-Line hemacytometer (American Optical 

Corporation, Buffalo, NY). In brief, dilutions of the four strains and control were made 

(APPENDIX 4), thoroughly mixed, placed  on the hemacytometer, and finally observed under a 

microscope (Leitz SM-LUX Microscope, Wetzlar, Germany). The cells present on either  four or 

five  specific squares (APPENDIX 5) were counted and the cell concentration per milliliter 

determined using the following calculations: 

• Total cell count in 4 squares  x 2, 500  x  dilution factor [ For  Diatom (FC2) only] 

• Total cell count in 5 squares  x 50,000 x  dilution factor 

2.15.2. Growth Conditions. Two batches (A and B) were grown using slightly different 

conditions to evaluate the fatty acid content of the identified strains.  

Batch A:  Five liters of each of the identified strains were grown in 3 gallon glass carboys using 

BG-11 media (Cyanobacteria-N3), 50X F/2 enriched with 1 % Na2 SiO3• 9 H2O % w/v (Diatom-

FC2) and BBM (Green algae FC1, D2 and Chlorella vulgaris UTEX 259). The inoculum used 

was 50 ml L 
-1 

on all strains except for the Diatom-FC2, for which 100 ml L 
-1 

were used.  Air 

(0.037 % CO2) was used for mixing at a flow rate of 190 SCCM (standard cubic centimeters per 

minute) under continuous illumination (59 µmol photons m
-2 

s
-1

, measured using an LI-193 

spherical quantum sensor along with a LI-1400 data logger) at 25ºC for 15 days with the 

http://www.ncbi.nlm.nih.gov/
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exception of FC2 (diatom), which was grown for 21 days. Cultures were harvested by 

centrifugation at 13,300 x g using a Sorvall RC-5 Superspeed refrigerated centrifuge. Harvested 

biomass was washed with DI water 2-3 times to reduce the salt content. Microalgae paste was 

subsequently freeze-dried using a Millrock Technology LD53 freeze-dryer (Millrock 

Technology Inc., Kingston, NY) with a preset program (APPENDIX 6) for 15 h. The total dry 

weight was determined for each of the strains. Analyses were run in duplicate. 

Batch B:  Strains were grown using the same conditions as in Batch A, but providing mixing 

through pumping of 5 % CO2 enriched air (American Air Liquide, Houston, TX) and the addition 

of a 0.05 M Sodium Phosphate buffer to adjust the pH in the growth media. Cultures were 

harvested after 10 days and after 21 days for FC2 (diatom). Analyses were run in duplicate. 

2.15.3. Lipid Extraction and Chlorophyll Determination. Lipids were extracted from freeze-dried 

biomass using a variation of the Folch Method (Folch et al., 1957; Iverson et al., 2001). In brief,  

20 parts of  2:1 chloroform/methanol were added to 1 part biomass. Next, 8-10 glass beads were 

placed in each tube, closed tightly and vortexed for 2 min. This mixture was then filtered using 

Whatman Grade 42 ashless filters with vacuum and then washed several times with a solution of 

2:1 chloroform/methanol.  A solution containing 0.88 % NaCl in water was added to obtain a 

combined filtrate with a final ratio of 8:4:3 chloroform/methanol/water.  The final biphasic 

system was centrifuged, and the  lower phase was collected into a preweighed glass tube. 

Chlorophyll a and b were determined at 664 and 646 nm, respectively, using a Beckman Coulter 

DU 800 UV/VIS spectrophotometer (Beckman Coulter Inc., Brea, CA). Absorbance units  

obtained were divided by molar absorptivity coefficients proposed by Jeffrey and Welschmeyer, 

(1997) where: 

•  Chlorophyll  a: 87.67 L g
-1

 cm
-1
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•  Chlorophyll  b: 51.36 L g
-1

 cm
-1 

 in the equation  to calculate pigment concentration: 

 • Concentration of Pigment (mg/L) :                                  Absorbance units (Au)  

                                                                                  Specific Absorption Coefficient (L g
-1 cm

-1
) 

 

 

The results for both types of chlorophyll were subtracted from the total lipid. Following this, the 

extract was evaporated to dryness under N2 using a water bath at 30°C  and a handmade 

evaporator. The tubes were wiped dry using kimwipes, dried in an oven at 55°C for an hour, let 

cool to 20°C in a dessicator for 30 min and the weights were recorded. Extractions for each 

sample were done in duplicate.  

2.15.4. Fatty Acids Analysis. Fatty acid methyl esters (FAME) were prepared by 

transesterification of lipid extracts as described by Xu et al. (2010).  Briefly, 40 µl of tricosanoic 

acid (1000 µg/ml) were added to each of the tubes containing a minimum of 2 mg of lipid. Two 

ml of MeOH:Benzene at a ratio of 4:1 (ρ = 0.8045 ±0.012 g/cm
3
) were added to each  tube and 

vortexed for 30 s. The samples were chilled at -74ºC for 15 min followed by the addition of  200 

µl of acetyl chloride. All tubes were flushed with N2 for five seconds. Samples were 

transesterified by keeping them in the dark at 20°C for 24 h. Five ml of a saturated solution of 

NaHCO3 was added to each tube to neutralize the mixture and stop the reaction.  Samples were 

vortexed for 30 s and 40 µl of nervonic acid methyl ester (1000 µg/ml) was added as internal 

standard. Samples were centrifuged for 10 min  at 900 x g. The top layer (150 µl) was collected 

and 3 µl injected into a GC (5890 Series II gas chromatograph, Hewlett-Packard, Avondale, PA) 

equipped with a flame ionization detector. FAME analyses were carried out with a 60 m x 0.32 

mm X 0.5 µm ZB-Wax + (Phenomenex, Torrance, CA) column.  The GC temperature program 
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was as follows: 150ºC for 3 min, 200°C at increments of 8°C per minute for 15.5 min, 250°C at 

increments of 8°C per minute for 20.5 min and at 280°C at increments of 10°C per minute for 11 

min. Helium was used as the carrier at a flow rate of 1.2 ml/min. Fatty acid identification was 

done by comparison of retention times with known standards (Supelco F.A.M.E. mix C4-C24, 

product number 18919-1AMP, Sigma-Aldrich, St. Louis, MO). Percent recovery for tricosanoic 

acid and nervonic acid methyl ester was calculated using the formula: Cexp / CTheo x 100, where 

Cexp = concentration of the standard based on the GC peak area (chromatogram) and CTheo = 

concentration of the standard added to each sample. 
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3. RESULTS 

3.1.Algal Isolation 

After growth for 2-3 weeks, cultures were heterogeneous at this stage. Colony 

homogenization was achieved by a serial dilution process. Samples were plated onto BG-11 and 

BBM for 2-4 weeks and observed under a light microscope at 250X. Four out of the 17 initially 

isolated colonies were selected for this study based on rapid growth, morphological and color 

diversity, and homogeneity. They were tentatively identified as cyanobacteria (N3), diatom 

(FC2), and green algae (FC1 and D2) (Figure 3.1).  

 

Figure 3.1. Microscopic Images for A) N3: Synechococcus sp., B) FC2: Sellaphora pupula,  C) 

FC1: Chlorella sorokiniana,  D) D2: Scenedesmus abundans,  and E) Chlorella vulgaris UTEX 

259 (control) as identified by BLAST. Images were taken at 250X using a Leica TCS SP2 

spectral confocal microscope. 

3.2. DNA Extraction  

Cells (N3, FC2, FC1, D2 and Chlorella vulgaris UTEX-259) were harvested through 

centrifugation and their genomic DNA extracted (in duplicate) and quantified.  DNA 

concentration ranged from 13- 440 ng/µl. Samples with DNA bands that showed high molecular 

weights and brightness were selected for PCR analysis. 
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3.3. PCR Products 

         Following PCR reactions, the quality of the PCR products was determined through agarose 

gel electrophoresis. Bands were observed in all nine conditions with isolate N3; whereas, five 

conditions showed bands with isolate D2 and only three conditions showed bands with isolates 

FC2 and FC1 (Figure 3.2). The molecular weights obtained for PCR products were 1.6 kb for N3 

using the 16S primers, 1.8 kb for FC2 with the 18S primers, 1.8 kb for FC1 using the 18S 

primers, and 2.2 kb for D2 with the 18S primers. A PCR product of 1.8 kb was obtained for 

Chlorella vulgaris UTEX 259 using the 18S primers. 

3.4. PCR Optimization 

        The best PCR conditions, based on PCR product quality results, were determined for each 

organism and were as follow: N3 (1L) no DMSO or glycerol at 1.5 mM MgCl2, FC2 (1H) no 

DMSO or glycerol at 4.5 mM MgCl2, FC1 (2M) with DMSO at 3 mM MgCl2, D2 (3M) with 

glycerol at 3 mM MgCl2 and Chlorella vulgaris UTEX-1 (3M) (gel not shown) with glycerol and 

3 mM MgCl2 (Figure 3.2). 

3.5. Purification of Plasmid DNA 

        Plasmid DNA concentration for each microorganism was determined after purification 

using 2 µl of sample DNA and reading it on a nanodrop spectrophotometer. Plasmid DNA 

concentration for the samples averaged 390 ng/µl  for N3, 109 ng/µl for FC2, 273 ng/µl for FC1, 

300 ng/µl  for D2, and 405 ng/µl  for Chlorella vulgaris UTEX. 

3.6. Restriction Enzyme Digestion 

       After EcoRI enzymatic digestion all selected transformant colonies had inserts (Figure 3.3). 

For N3, two bands that were close together could be seen on each of the samples which 

corresponded to the PCR product insert bands.  With regards to the samples amplified using 18S 
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rRNA gene primers, it was noticeable that the inserts for D2 (Lanes 7- 9) were larger than the 

rest.  

 

 

 

 

 

 

     

  

 

Figure 3.2. PCR Amplification Results Gel. PCR product quality of nine conditions for N3 (A), 

FC2 (B), FC1 (C), and D2 (D) mixed with MgCl2 at 1.5 mM (low concentration, L), 3 mM 

(medium concentration, M), and 4.5 mM (high concentration, H). 

 

 

 

 

 

Figure 3.3. Restriction Enzyme Digestion Gel. Lane M, molecular weight marker. Lane 1, N3-1. 

Lane 2, N3-2. Lane 3, N3-3. Lane 4, FC1-1. Lane 5, FC1-2. Lane 6, FC1-3. Lane 7, D2-1. Lane 

8, D2-2. Lane 9, D2-3. Lane 10, C. vulgaris UTEX-1. Lane 11, C. vulgaris UTEX-2. Lane 12, C. 

vulgaris UTEX-3.  Lane 13, FC2-1. Lane 14, FC2-2. Lane 15, FC2 -3.     

3.7. Sequencing 

          Plasmid DNA for each strain was sent out for sequencing and the sequences obtained were 

compared against sequences on the GenBank at the NCBI website. It was noticed that the 
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sequences amplified using M13 forward and M13 reverse primers (GeneLab) did not possess the 

length required to cover the amplified sequence of either 16S rRNA or 18S rRNA genes on the 

samples. Therefore, new primers were designed to fill that gap (Table 2.1). After the new 

sequences were obtained from all microorganisms from the LSU GeneLab, they were analyzed 

by pair-wise comparison and a final sequence was assembled. The obtained sequences were once 

again compared to the sequences available on the GenBank at the NCBI website. 

3.8. BLAST 

  BLAST on the NCBI website indicated that N3 had a 99 % maximum identification with 

a Synechococcus sp. TAG 16S ribosomal RNA gene partial sequence with the accession number 

AF448066.1. FC2 results showed a 98 % maximum identification with a Sellaphora pupula 

clone RBG1 18S rRNA gene partial sequence with accession number EF151962.1.  FC1 showed 

a 99 % maximum identification with a Chlorella sorokiniana18S rRNA gene, strain Prag A14 

with accession number X74001.1. D2 showed a 99 % maximum identification with Scenedesmus 

abundans gene for 18S small subunit rRNA with accession number X73995.1. For the control 

Chlorella vulgaris UTEX 259, there was a maximum identification of 99 % with Chlorella 

vulgaris genes for 18S rRNA, ITS1, 5.8S rRNA, and ITS2 with accession number AB162910.1 

(Table 3.1). Both runs for sequences for each organism, which were obtained from independent 

PCR runs, were found to be consistent showing only minimal nucleotide differences between 

them. 

3.9. Algae Inoculum 

            Cell counts from inoculums for both batches are depicted in Table 3.2. Some differences 

were noticed between batches with Synechococcus sp. having a higher cell count (1.12 X 10
8
) in 

Batch A as compared to Batch B (4.82 X 10
7
). 

http://www.ncbi.nlm.nih.gov/nucleotide/22023594?report=genbank&log$=nucltop&blast_rank=1&RID=ZFPE2WMC016
http://www.ncbi.nlm.nih.gov/nucleotide/134143232?report=genbank&log$=nucltop&blast_rank=1&RID=ZPPAZ80H01N
http://www.ncbi.nlm.nih.gov/nucleotide/393466?report=genbank&log$=nucltop&blast_rank=3&RID=ZPR5HFYZ012
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Table 3.1. Codes for isolated microorganisms with tentative identification based on morphology, 

similarity between amplified sequences and nearest recorded sequence in NCBI using BLAST 

and accession numbers for NCBI sequences. 

Microorganism   Similarity with the nearest recorded sequence  Accession number 

N3 (cyanobacteria) 99 % with Synechococcus sp. TAG 16S   AF448066.1 

FC2 (diatom) 98 % with  Sellaphora pupula clone RBG1  EF151962.1   

FC1 ( green algae) 99 % with Chlorella sorokiniana strain Prag A14  X74001.1 

D2 (green algae) 99 % with Scenedesmus abundans  X73995.1 

C. vulgaris*  99 % with Chlorella vulgaris   AB162910.1  

*= Chlorella vulgaris UTEX 259 (control). 

 

 

Table 3.2. Algae inoculums for Batch A and Batch B in  cells ml
-1 

Strain Density 

  Batch A Batch B 

Synechococcus sp. 1.12 X 10
8 

4.82 X 10
7
 

Sellaphora pupula 2.75 X 10
4 

1.50 X 10
4
 

Chlorella sorokiniana 4.80 X 10
6 

6.20 X 10
6
 

Scenedesmus abundans 1.06 X 10
7 

1.06 X 10
7
 

Chlorella vulgaris UTEX 259 3 X 10
6 

8.1 X 10
6
 

 

3.10. Biomass for Lipid Extraction 

             The dry weights of each microorganism used for lipid extraction studies are presented in 

Table 3.3. Compared to control (0.037 % CO2), most strains resulted in an increase in total dry 

biomass when grown using 5 % CO2, with the exception of Synechococcus sp., which mass 

decreased from 435 to 168 mg of dry biomass. 

3.11. Total Extracted Lipid and Chlorophyll Content  

Extracted lipids on dry weight biomass for each strain are summarized in Table 3.4. A 

decrease in the total lipid portion was observed on three out of the five evaluated strains when 

compared to the control batch (Batch A), with the exception of Scenedesmus abundans which 

resulted in an insignificant increment and C. vulgaris UTEX 259 with almost a two-fold 

increment. 

http://www.ncbi.nlm.nih.gov/nucleotide/134143232?report=genbank&log$=nucltop&blast_rank=1&RID=ZPPAZ80H01N
http://www.ncbi.nlm.nih.gov/nucleotide/393466?report=genbank&log$=nucltop&blast_rank=3&RID=ZPR5HFYZ012
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Fatty acid profiles for identified strains are summarized in Tables 3.5. The total amount 

of fatty acids decreased for three of the strains when using CO2. The most significant difference 

in the amount of fatty acids was observed with Sellaphora pupula when grown using air (54.8 

mg g
-1 

dry biomass) as compared to using CO2 (24.4 mg g
-1 

dry biomass). The amount of fatty 

acids for Synechococcus sp. and Chlorella sorokiniana decreased slightly from 20.63 mg g
-1 

dry 

biomass and 29.82 mg g
-1 

dry biomass to 17.62 mg g
-1 

dry biomass and 23.99 mg g
-1 

dry 

biomass, respectively. However, for Scenedesmus abundans an increment was seen from 14.14 

mg g
-1 

dry biomass to 31.63 mg g
-1 

dry biomass. Chlorella vulgaris UTEX 259 presented the 

most significant increment from 15.14 mg g
-1 

dry biomass to 47.83 mg g
-1 

dry biomass, with 

more than half of that total belonging to the polyunsaturated fatty acid (PUFA) fraction. 

Recoveries for internal (methyl nervonate) and external (methyl tricosanoate) standards were 

88% and 82% on average, respectively. The total chlorophyll concentration was negligible 

averaging 0.007 mg g
-1 

of oil. 

Table 3.3. Total dry biomass for lipid extraction. 

          mg dry biomass   

Strain Batch A *  Batch B**   

Synechococcus sp. 435 168   

Sellaphora pupula  62 100   

Chlorella sorokiniana  158 847   

Scenedesmus abundans 210 682   

Chlorella vulgaris UTEX 259   294 575   

* = Strains grown for 15 days with mixing using air (0.037 % CO2). **= Strains grown for 10 

days with mixing using 5 % CO enriched air. 
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Table 3.4. Total lipid extracted from biomass (g/100 g dry biomass). 

Strain Batch A* Batch B**   

Synechococcus sp. 9.17 6.9   

Sellaphora pupula  19.52 12.12   

Chlorella sorokiniana  11.56 10.95   

Scenedesmus abundans 11.61 11.8   

Chlorella vulgaris UTEX 259   7.36 13.65   

* = Strains grown for 15 days with mixing using air (0.037 % CO2). **= Strains grown for 10 

days with mixing using 5 % CO2 enriched air. 
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ND= None detected; *= total fatty acids. 

Table 3.5. Fatty acid profiles for evaluated strains grown in air (0.037 % CO₂) or 5 % CO₂ in mg g⁻¹ dry biomass. 

Results are the average means of duplicates along with standard deviations. 

 
   Fatty Acid                 Synechococcus sp.          Sellaphora pupula         Chlorella sorokiniana           Scenedesmus abundans     Chlorella vulgaris UTEX  259 

  Air (0.037 % CO₂)      5 % CO₂ Air (0.037 % CO₂)    5 % CO₂ Air (0.037 % CO₂)    5 % CO₂ Air (0.037 % CO₂)    5 % CO₂ Air (0.037 % CO₂)    5 % CO₂ 

Saturated                      

 Fatty Acids (SFA's)                     

C14:0    5.85 ± 0.03    5.24 ± 0.64 3.73  ± 0.14 1.33 ± 0.05 1.01 ± 0.008 1.22 ± 0.03 0.78 ± 0.04 2.24 ± 0.01  0.56  ± 0.06  2.29  ± 0.05 

C16:0    3.57 ±  0.03    3.13 ± 0.16 8.99 ± 0.57 6.02 ± 0.39 7.76 ± 0.96  6.90 ± 2.24 3.15  ± 0.11 6.56 ± 0.84 3.20 ± 0.42 10.35 ± 0.77 

C18:0     0.50 ± 0.05     0.85 ±  0.02   2.85 ± 0.13   1.26 ± 0.005 0.93 ± 0.01 1 2.09 ± 0.03 ND 0.79 ± 0.06 ND 

Total SFAs 9.92 9.22 15.57 8.61 9.7 9.12 6.02 8.8 4.55 12.64 

Monounsaturated                     

 Fatty Acids (MUFA's)                     

C16:1 10.23  ± 0.004 6.24  ± 0.56 16.07 ± 1.50 9.24 ± 0.78 1.54  ± 0.01 2.03  ± 0.82 1.22 ± 0.03 4.13 ± 0.56 0.41 ± 0.09 5.41 ± 0.53 

C18:1 0.48  ± 0.07 0.89  ± 0.03 3.06 ± 0.06 1.40 ± 0.007 1.42 ± 0.14 1.52 ±  0.21   1.14 ± 0.02 3.73 ±  0.47 0.71 ± 0.06  2.02 ±  0.45 

Total MUFAs 10.71 7.12 19.13 10.64 2.96 3.55 2.36 7.86 1.12 7.43 

Polyunsaturated                     

 Fatty Acids (PUFA's)                     

 C18:2      ND 0.34 ± 0.02 1.43 ± 0.03 0.73  ± 0.22 6.91 ± 0.16 5.87 ± 1.18 2.41 ± 0.07 2.20 ± 0.19 1.68 ± 0.24   3.59  ± 0.56 

 C18:3 ND 0.94 1.62 ± 0.05 1.87 ± 0.0001 10.25  ± 0.19 6.65  ± 0.21 3.35 ± 0.12 12.77 ± 1.81 7.79 ± 1.31  24.17  ± 4.78 

C20:4 ND ND 17.08  ± 0.06 2.55  ± 0.27 ND ND ND ND ND ND 

Total PUFAs 0  1.28 20.13 5.15 17.16 12.52 5.76 14.97 9.47 27.76 

Fatty Acids* 20.63 17.63 54.8 24.4 29.82 23.99 14.14 31.63 15.14 47.83 
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4. DISCUSSION 

First described in the late 1980‘s, PCR is one of the most widely used methods in 

molecular biology (Saiki et al., 1988). Several decades later, attempts for PCR optimization 

continued to be made to meet its specific objectives (Dieffenbach and Dveksler, 2003). Templates 

known for being difficult to sequence include those with high guanine-cytosine (G/C) content, 

high adenine-thymine (A/T), as well as sequences with marked secondary structure or large 

regions of homopolymer (Stirling, 2003). In regards to sequences with high G/C content, several 

approaches have been taken to solve this problem and perhaps the most successful method for 

improving results is the inclusion of certain organic additives in the reaction mixture, such as 

DMSO, betaine, polyethylene glycol, glycerol and formamide (Chakrabarti and Schutt, 2001). 

The effect DMSO exerts in the PCR amplification of some GC-rich sequences is a largely studied 

one (Pomp and Medrano, 1991; Sun et al., 1993; Sidhu et al., 1996). 

  In this study, the DNA treatment containing neat DMSO and 3 mM MgCl2 was 

determined to be the best PCR condition for FC1. Kang et al. (2005) conducted a study to find the 

best PCR conditions for the uniform amplification of random sequence templates, which can be 

disrupted by high GC content. They determined that the effect of additives on PCR was more 

outstanding in the presence of 5 % DMSO, which increased the ratio of full length to short 

products by 120 % (Kang et al., 2005). For D2 and Chlorella vulgaris UTEX 259, the best 

condition was determined to be the one that had glycerol at 50 % and MgCl2 at 3 mM. Nagai et al, 

(1998) conducted a study to evaluate the effect of various additives, among them glycerol, on 

PCR. Their results indicated that the addition of either one in the reaction mixture allowed the 

specific amplification when an enterohemorrhagic E. coli DNA fragment was used as template. 

The improvement of glycerol on PCR efficiency and specificity can possibly be explained by (1) 
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glycerol‘s enhancement of the hydrophobic interactions between protein domains (Back et al., 

1979); (2) lowering of the strand-separation temperature (Wang et al., 1993); and (3) a raise on 

proteins‘ thermal transition temperature (Back et al., 1979; Gekko and Timasheff, 1981).  

Magnesium Chloride (MgCl2) is a necessary co-factor for all Type II enzymes which 

include restriction endonucleases and polymerases. Mg
2+

 binds to the enzyme inducing a shift 

which puts the subunits in a proper configuration. It is assumed that a significant reduction in 

MgCl2 concentration may prevent a sufficient number of enzyme molecules from being in the 

correct conformation for good amplification to happen (IDT, 2005). However, it is also known 

that excessive MgCl2 can be equally harmful many times, with a substantial increase in secondary 

products produced by non-specific priming being the usual response to excess Mg
2+

 (IDT, 2005).  

In the present study, three different concentrations of MgCl2 were tested (1.5, 3, 4.5 mM). 

Three mM of MgCl2 was optimum for the amplification of FC1, D2 and C. vulgaris, 1.5 mM for 

N3 and 4.5 mM for FC2. A study performed using genomic DNA from selected strains of Vibrio 

vulnificus to obtain DNA fingerprint profiles with arbitrarily primed polymerase chain reaction 

(AP-PCR) demonstrated that when using a MgCl2 concentration of 2.5 mM and  PCR cycling 

parameters in combination with 1 µg of purified genomic DNA, 1.04 mM of R-PSE420  

oligonucleotide primer and thermal cycling protocols with stepwise increments in the annealing 

temperatures, reproducible DNA fingerprints free of primer artifacts were generated (Vickery et 

al., 1998). The aforementioned MgCl2 concentration is close to the medium (3 mM) concentration 

used in the present study which was optimum for the amplification of three out of the five 

organisms subjected to algal identification.  

The size of the PCR products obtained in this study were ~1.6 kb for N3, using a set of 

16S rRNA primers, and ~1.8 kb for FC2, FC1 and Chlorella vulgaris UTEX 259. The PCR 
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product for D2; however, had a size of 2.2 kb, which were observed on both, the PCR product gel 

and on the restriction enzyme digestion gel. This was confirmed by the fact that the final sequence 

assembled for D2 had a total of 2, 200 bp, suggesting that this particular gene on D2 was different 

compared to the other isolates amplified by the 18S rRNA primers. Therefore, this organism 

could be considered a different strain within its genus since the query coverage for D2 was only 

81 % (results not shown) and it was the lowest among the sample strains (query coverage for the 

other microorganisms was between 98-100 %).  

The NCBI website identified matches for all four sample strains. N3 was identified as 

Synechococcus sp. TAG 16S ribosomal RNA gene, partial sequence, FC2 as Sellaphora pupula 

clone RBG1 18S rRNA gene, partial sequence, FC1 as Chlorella sorokiniana18S rRNA gene, 

strain Prag A14, and D2 as Scenedesmus abundans gene for 18S small subunit rRNA.  

 PNNL Biofuels Scientific Focus Area (BSFA) have conducted research in cyanobacteria 

in an attempt to develop a better  understanding of metabolic subsystems and regulatory networks 

involved in solar energy conversion to biofuel products (Bryant et al., 2011). A system approach 

to understanding issues such as metabolic modules, physiological constraints and maximum rates 

of carbon processing is being undertaken by exploiting the fast-growing cyanobacterium, 

Synechococcus sp. PCC 7002, which has the added benefit of a well-developed genetic system 

(Bryant et al., 2011). Cyanobacteria are said to be attractive candidates for biofuel producing 

microbial systems since they possess the favorable characteristics of both prokaryotes and plants.  

Cyanobacteria are photosynthetic organisms able to absorb solar energy and fix carbon dioxide, 

whereas other biofuel-producing microbes such as E. coli, Zymmomonas mobilis, Saccharomyces 

cerevisiae are not capable of doing both (Lu, 2010). 
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 Studies on oleaginous diatoms indicate that the average lipid content can be 22.7 % dry 

cell weight when grown under normal conditions, whereas under stress conditions, a total lipid 

content of 44.6 % dry cell weight was seen (Hu et al., 2008). Sellaphora pupula (Kutzing) 

Mereschkowsky (formerly Navicula pupula Kutzing) is a common, freshwater diatom species and 

a complex organism containing many pseudo- and semi-cryptic species (Mann, 1984, 1989, 1999; 

Mann and Droop, 1996; Mann and Kocioleck, 1990; Behnke et al., 2004; Evans et al., 2007, 

2008).  A member of this genera, namely Navicula sp., has been found to possess a fatty acid 

profile where 16:0, 16:1 and 20:5n3 make up more than 75 % of the total lipid content (Dunstan 

et al., 1994), and other studies have determined the presence of C25 triene III, considered probably 

the most abundant and widely occurring highly branched isoprenoid (HIB) alkene observed in 

marine diatoms (Belt et al., 2001).  

 Chlorella species can be encountered in all water habitats, fresh and marine sources 

(Iwamoto, 2004). It contains essential amino acids, protein, minerals, vitamins, chlorophyll, and 

bioactive substances (Borowitzka, 1988; Schubert, 1988). Bio-energy generation from Chlorella 

is a relatively new aspect in renewable energy research (Phukan et al., 2011). Illman et al, (2000) 

studied calorific values of Chlorella strains (Chlorella protothecoides, vulgaris, emersonii, 

sorokiniana, and marine strain, minutissima) using medium with low nitrogen content and pointed 

out that Chlorella strains may be good prospects for diesel replacements. Chader et al. (2011) 

analyzed the major fatty acids in Chlorella sorokiniana using Gas Chromatography and by 

growing it on different types of media. It was observed that the strain was mainly composed of a 

mixture of unsaturated fatty acids, such as oleic (18:1), linoleic (18:2) and linolenic acid (18:3). 

Saturated fatty acids, palmitic (16:0) and stearic (18:0), were also present to a small extent. In a 

study by Knothe (2008), palmitic, stearic, oleic, and linoleic acids were recognized as the most 
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common fatty acids present in the biodiesel. In the three media tested (TAP, BG-11 and media 

+N), C18:1 and C18:2 were commonly dominant. Chader et al. (2011) reported that the most 

important fatty acids were C16:0, C18:0, C18:1, C18:2 and C18:3 regardless of the medium 

utilized. Scragg et al. (2003) used an emulsion consisting of transesterified rape seed oil, a 

surfactant and slurry of Chlorella vulgaris in an unmodified single cylinder diesel engine with 

good results; whereas, Xu et al. (2006) was able to produce high quality biodiesel using 

heterotrophically grown Chlorella protothecoides. 

 The genus Scenedesmus, belonging to the green algae, have become the equivalent of 

laboratory rats in many fields in limnology or fresh water science (Wiltshire et al., 2000).  If one 

algal species had to be chosen for biodiesel production, the one with the most suitable fatty acid 

profile, specifically in terms of linolenic and polyunsaturated fatty acids, would be Scenedesmus 

obliquus (Gouiveia and Oliveira, 2009). Mandal and Mallick, (2009), studied lipid accumulation 

in Scenedesmus obliquus when grown under nitrogen deficiency and observed that lipid was 43 % 

of dry cell weight compared to 12.7 % (dry cell weight) in the control; whereas, the lipid content 

increased up to 30 % when phosphorus deficiency and thiosulphate supplementation were used. 

When cultured for 8 days, the application of response surface methodology in combination with 

central composite rotary design (CCRD) resulted in a lipid yield of 61.3 % (against 58.3 % 

obtained experimentally) at 0.04, 0.03, and 1.0 g L 
-1

 of nitrate, phosphate, and sodium 

thiosulphate, respectively .  

            The four strains (Synechococcus sp., Sellaphora pupula, Chlorella sorokiniana, and 

Scenedesmus abundans) isolated from Louisiana‘s fresh and brackish water bodies represent 

potential candidates for the production of biodiesel. In regards to the algal biomass obtained, an 

increase in final dry biomass was observed with most strains when aeration with 5 % CO2 was 
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used for culturing, with the exception of the cyanobacteria Synechococcus sp. Synechococcus sp. 

strain exhibited the lowest pH of all strains showing susceptibility to dissolved levels of CO2. 

Wang et al. (2011) observed that significant inhibitory effects on the growth of two 

cyanobacterial species, Microcystis aeruginosa and Anabaena spiroides, were seen when three 

pH conditions (5.5, 6.0 and 6.5) were reached using aeration with CO2. Chlorella sorokiniana, on 

the contrary, was the strain with the best response to CO2 aeration resulting in a six-fold increase 

in dry biomass. A two-fold increase was observed for Sellaphora pupula and Chlorella vulgaris 

UTEX 259 and above a three-fold for Scenedesmus abundans. Huertas et al. (2000) reported that 

cultures of Nannochloropsis gaditana grown in the absence of dissolved inorganic carbon (DIC) 

and with aeration of less than 0.0001% (v:v) CO2  considered to be low DIC conditions, presented 

a reduction in final cell biomass of approximately 56 % when compared to  the biomass obtained 

in cultures grown under control conditions which equaled 2 mM DIC in the medium and 0.03% 

(v:v) CO2. No growth was observed in Nannochloris maculata cultured under low DIC 

conditions. However, when a concentration of 1% (v:v) CO2 in air (high DIC conditions) was 

used, only the growth of N. maculata was enhanced, concluding that the response to DIC was 

species dependent. It was also observed that the uptake of nitrate and phosphate by N. maculata 

was linked to the inorganic carbon level and determined that no nutrient absorption had been 

observed in the low DIC-culture. Growth, however, at the highest inorganic carbon concentration 

caused an acceleration of the uptake of these nutrients. 

 A decrease in the amount of total fatty acids extracted from Synechococcus sp., Sellaphora 

pupula and Chlorella sorokiniana was observed when the growth media was aerated with 5 % 

CO2. The amount of total lipids decreased from 20.63, 54.8 and 29.82 g kg
-1

 to 17.62, 24.4 and 

23.99 g kg
-1

, respectively. Similar observations have been reported by Sato (1989), when 
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supplementing 1 % and 3 % CO2 to Chlamydomonas reinhardtii cells grown 

photoautotrophically. Total polar lipids decreased from 60.3 nmol/10
7
 using 0.04 % CO2, to 44.2 

nmol/10
7 

and 45.7 nmol/10
7
 when the media was supplemented with 1 and 3 % CO2, respectively. 

The opposite was observed with Scenedesmus abundans and Chlorella vulgaris UTEX 259 where 

total lipids extracted increased from 14.14 g kg
-1

 to 31.63 g kg
-1

 and from 15.14 g kg
-1 

to 47.83 g 

kg
-1

, respectively. Tang et al. (2011) reported similar trends with Scenedesmus obliquus and 

Chlorella pyrenoidosa grown in media supplemented with 0.03 %, 5 %, 10 %, 20 %, 30 %, and 

50 % CO2. The total lipid content for Scenedesmus obliquus increased from 15.15 wt. % at 0.03 

% CO2 to 16.45 wt. % at 5 % CO2, whereas for Chlorella pyrenoidosa the total lipid content 

decreased from 20.9 wt. % at 0.03 % CO2 to 20.65 wt. % at 5 % CO2. These results demonstrate 

that even within the green algae classification various responses could be observed. 

Changes were exhibited in the distribution of saturated (SFAs), monounsaturated 

(MUFAs) and polyunsaturated (PUFAs) fatty acids when 5 % CO2 was used. The trend observed 

for Synechococcus sp., Sellaphora pupula and Chlorella sorokiniana was a decrease on SFAs, 

MUFAs and PUFAs with the exception of a slight increase (~0.5 g kg
-1

) in MUFAs for Chlorella 

sorokiniana. An increase in all three categories of fatty acids was observed for Scenedesmus 

abundans and Chlorella vulgaris UTEX 259. Similar observations on strains of Scenedesmus 

obliquus and Chlorella pyrenoidosa with an increase in total fatty acids when providing 5 % CO 2 

compared to 0.03 % were reported by Tang et al. (2011). Tsuzuki et al. (1990) observed an 

increase in the composition of saturated fatty acids over that of unsaturated fatty acids for 

Chlorella vulgaris after 1h under CO2 concentrations ranging from 0.036 % to 2 %.      

 The main fatty acids in Synechococcus sp. grown in media supplemented with air were 

C16:1, C14:0 and C16:0. These findings agree with those reported by Pratoomyot et al. (2005) 
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and Patil et al. (2007). For Sellaphora pupula, the main fatty acids were C20:4, C16:1 and C16:0. 

Dunstan et al. (1994) described 16:1n7, 16:0 and 20:5n3 as the main fatty acids found on 

Navicula sp.  The main fatty acids detected in Chlorella sorokiniana were C18:3, C16:0, C17:0 

and C18:2. Hu et al. (2008) reported C16:0, C18:2 and C18:3 as being the major fatty acids in a 

Chlorella sorokiniana strain. Significant amounts of 16:3 and 16:2n7 were also detected, which 

may possibly correspond to the C17:0 content identified for this strain in the present study since 

neither 16:3 nor 16:2n7 were part of the F.A.M.E. mix used for the characterization. Chader et al. 

(2011) reported a similar profile on a locally isolated Chlorella sorokiniana strain. The strain 

when grown using TAP media contained C18:3, C18:2, C18:1 and C16:0 as the main fatty acids. 

The main fatty acids for Scenedesmus abundans were C18:3, C16:0, and C18:2. These findings 

were in agreement with those reported by Pratoomyot et al. (2005). Isik et al. (1999) reported 

C16:0, C18:0 +1 and C18:3 as the main fatty acid components in Scenedesmus abundans. The 

main fatty acids detected in Chlorella vulgaris UTEX 259 were C18:3, C16:0 and C18:2 and are 

in agreement with the results reported by Isik et al. (1999). 

 The primary emission in flue gas is CO2, which may be present at concentrations ranging 

from 3 % to 25 % (Packer, 2009). Microalgal fixation of CO2 by photosynthesis is considered the 

most favorable potential method for CO2 sequestration from flue gas through the incorporation of 

CO2 into a biomass carbon source such as lipids  (Lee and Lee, 2003; Doucha et al.,  2005; Wang 

et al.,  2008; Brune et al.,  2009; Yoo et al., 2010; Ho et al., 2011). The use of biomass generated 

by capturing CO2 from industrial processes through microalgae, followed by its utilization for 

transportation needs, can aid on CO2 sequestration and it would also help to diminish overall 

carbon emissions (Chiu et al., 2011). Chiu et al. (2011) reported a Chlorella strain that when 

treated with intermittent flue gas aeration in a double-set photobioreactor system, had an average 
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efficiency of CO2 removal from the flue gas that reached 60 %, and NO and SO2 removal 

efficiency that was maintained at approximately 70 % and 50 %, respectively. A typical 

composition of emissions from flue gases from two different power plants is given in Tables 4.1 

and 4.2.  

Table 4.1. Flue gas composition of Wyodak PC power plant (Robertson, 2007). 

 

Flue gas 

component 

Concentration (by volume)                                              

CO2 11.8 % 

N2 67 % 

H2O  8 % 

 O2 12 % 

SO2 180 ppm 

NOx 150 ppm 

 CO 300 ppm 

 

Table 4.2. Typical untreated flue gas composition from a power plant burning low sulfur eastern 

bituminous coal. (Granite and Pennline, 2002). 

 

Flue gas 

component  

Concentration ( by volume)                                              

CO2 15-16 % 

O2 3-4 % 

H2O  5-7 % 

 SO2 800 ppm 

SO3 10 ppm 

NOx 500 ppm 

        CO  20 ppm 

        HCl 100 ppm 

    Total Hg 1 ppb 

         N2 Balance 

Hydrocarbons 10 ppm 
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 The fatty acid profiles in this study changed on each of the strains when grown in 5 % 

CO2 enriched media. For Synechococcus sp., C16:1, C14:0 and C16:0 remained the major fatty 

acids with the appearance of C18:2 and C18:3 which were absent in the batch grown in the 

presence of air only. This can be attributed to the desaturation effect due to higher concentration 

of CO2 as described by Tang et al. (2011). According to Knothe (2008), the most common fatty 

acid esters in biodiesel are C16:0, C18:0, C18:1, C18:2 and C18:3. This is true for biodiesel 

feedstocks such as soybean, sunflower, rapeseed, palm and peanut oils (Knothe, 2008).   

The fatty acid profile of Sellaphora pupula changed considerably when grown using 5 % 

CO2. In the case of the PUFA C20:4, it was reduced from 17.08 g kg
-1 

to 2.55 g kg
-1 

and a smaller 

yet not significant decrease was also observed for
 
C16:1 and C16:0. A high content of PUFAs is 

usually not a desirable feature in a feedstock for biodiesel production since this can result in 

biodiesel with low oxidative stability, low viscosity and low cetane number, being the latter a 

dimensionless descriptor of the ignition quality of a diesel fuel (Knothe, 2008). Sellaphora pupula 

demonstrated the greatest lipid percentage yield (19.52 %) when grown with air fed into the 

media, and, just like in Synechococcus sp., additional testing to determine an ideal CO2 level 

could result in better biomass yields.  For Chlorella sorokiniana, C18:3, C16:0 and C16:2 

remained the main fatty acids after CO2 aeration. Chlorella sorokiniana had the best growth 

response yielding the most biomass when treated with 5 % CO2. For Scenedesmus abundans, 

C18:3 and C16:0 remained the main fatty acids, but the MUFAs C16:1 and C18:1 displaced the 

PUFA C18:2 when grown using 5 % CO2. This can be considered a positive shift since 

Scenedesmus abundans displayed the highest content of C18:1. Oleic acid has been suggested in 

the past as a compound for improving biodiesel fuel properties due to its low melting point (-

20°C) (Knothe, 2008). Oleic acid possesses better oxidative stability than C18:2 and C18:3 and it 



 

55 
 

exceeds the minimum cetane number standards given by the EN 14214 and ASTM D6751 

(Knothe, 2008). In addition, out of the four isolated strains, Scenedesmus abundans produced the 

most total fatty acids with 31.63 g kg
-1

. The main fatty acids detected for Chlorella vulgaris 

UTEX 259 were C18:3, C16:0 and C16:1 in the presence of 5 % CO2, compared to C18:3, C16:0 

and C18:2 without CO2 aeration.  It can be highlighted here that a substantial increment in C18:3 

from 7.79 g kg
-1 

to 24.17 g kg
-1

 was observed. However, since this was mostly PUFAs, Chlorella 

vulgaris UTEX 259, under these circumstances, would not have the fatty acid profile most 

suitable for biodiesel production; but, it did produce the most total fatty acids at 47.83 g kg
-1 

Oxidative stability, poor low-temperature properties and a slight increase in NOx exhaust 

emissions remain as the major challenges with biodiesel (Knothe, 2008). The challenge when 

addressing these problems is that solving one of them usually negatively affects another one and 

this observed pattern is related to the dependence of fuel properties on the fatty acid profile 

(Knothe, 2008).   Cha et al. (2011) suggested that the use of a binary blending of microalgae 

system to attain an ―ideal mix‖ of fatty acids could be pursued. In their study, they proposed a 

mixture of C16:1, C18:1 and C14:0 fatty acids in a ratio of 5:4:1 for biodiesel of very low 

oxidative potential but that could still offer both, a favorable cold filter plugging point (CFPP) 

rating and  cetane number. Following this suggestion, not only could individual strains isolated in 

the present study be tested at a larger scale, but could also be combined to obtain a mixture that 

can offer an even better fatty acid profile and biomass productivity for biodiesel production when 

paired with the use of CO2. 
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5. CONCLUSIONS 

Four algae, two of them obtained from different brackish sources and the other two 

obtained from a fresh water source within the state of Louisiana‘s Southeast region, were 

tentatively identified as Synechococcus sp., Sellaphora pupula, Chlorella sorokiniana, and 

Scenedesmus abundans. The use of other taxonomical approaches is recommended to 

complement these findings. 

The fatty acid profiles of the above mentioned organisms were altered when CO2 aeration 

was incorporated into the growth media.  Synechococcus sp.‘s profile contained the major fatty 

acids that traditional biodiesel feedstocks possess. Sellaphora pupula had the best lipid percentage 

yield and the highest content of C16:1, which is considered to be the best fatty acid to improve 

biodiesel‘s characteristics after C18:1. Scenedesmus abundans displayed the highest content of 

C18:1. Oleic acid has been suggested in the past as a compound for enrichment in biodiesel fuels 

for improving biodiesel properties. Scenedesmus abundans can be considered as the second best 

candidate of all the strains analyzed for biodiesel feedstock. However, the lower C18:3 content 

observed in Chlorella sorokiniana allowed for a balanced fatty acid profile in terms of cetane 

number, oxidative stability, viscosity and low temperature conditions. In addition to the 

aforementioned properties, Chlorella sorokiniana had the greatest productivity when grown using 

CO2, making it the best candidate for the production of biodiesel. The opposite can be said for the 

control Chlorella vulgaris UTEX 259 which contained 50 % of total fatty acid as C18:3 making it 

a less desirable candidate for biodiesel production in terms of oxidative stability.    

An interesting approach could be the establishment of a binary production system between 

Chlorella sorokiniana, with a high biomass production, and Scenedesmus abundans, with a better 

fatty acid profile, to produce oil with superior quality and characteristics for the production of 
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biodiesel. Additionally, further testing should be made to determine if the isolated strains can 

tolerate higher CO2 concentrations and evaluate their effect on biomass and fatty acid profile. 
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APPENDIX 1. F/2 MEDIA COMPOSITION  

                                                                                                                                                                   

                                                                                                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Component Stock Solution Quantity 

per liter 

of 
medium 

Molar 

Concentration in 

Final Medium 

    NaNO3 75 g/L dH2O 1 mL 8.82 x 10-4 M 

NaH2PO4 H2O 5 g/L dH2O 1 mL 3.62 x 10-5 M 

Na2SiO3 9H2O 30 g/L dH2O 1 mL 1.06 x 10-4 M 

trace metal 

solution 

(recipe below) 1 mL --- 

vitamin solution (recipe below) 0.5 mL --- 

Component Primary 

Stock 

Solution 

Quantity 

per liter 

of 
medium 

Molar 

Concentratio

n in Final 
Medium 

thiamine HCl 
(vit. B1) 

--- 200 mg 2.96 x 10-7 M 

biotin (vit. H) 0.1 g/L 

dH2O 

10 mL 2.05 x 10-9 M 

cyanocobala-

min (vit. B12) 

1.0 g/L 

dH2O 

1 mL 3.69 x 10-10 

M 

Component Primary Stock 

Solution 

Quantity 

per liter 

of 
medium 

Molar 

Concentration in 

Final Medium 

FeCl3 6H2O --- 3.15 g 1.17 x 10-5 M 

Na2EDTA 2H2O --- 4.36 g 1.17 x 10-5 M 

CuSO4 5H2O 9.8 g/L dH2O 1 mL 3.93 x 10-8 M 

Na2MoO4 2H2O 6.3 g/L dH2O 1 mL 2.60 x 10-8 M 

ZnSO4 7H2O 22.0 g/L dH2O 1 mL 7.65 x 10-8 M 

CoCl2 6H2O 10.0 g/L dH2O 1 mL 4.20 x 10-8 M 

MnCl2 4H2O 180.0 g/L dH2O 1 mL 9.10 x 10-7 M 

F/2  Vitamin Solution 

Trace metals solution 
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APPENDIX 2. BLUE-GREEN 11 MEDIA COMPOSITION    

    

 

 Component  Quantity per liter of 

medium 

 Stock Solution  

Concentration 

 

 

Final Concentration  

        

 

NaNO3   10 mL  30 g/200 mL dH2O  17.6 mM  

 

K2HPO4    10 mL  0.8 g/200 mL dH2O  0.22 mM  

 

MgSO4·7H2O    10 mL  1.5 g/200 mL dH2O  0.03 mM  

 

CaCl2·2H2O    10 mL  0.72 g/200 mL dH2O  0.2 mM  

 

Citric Acid·H2O    10 mL  0.12 g/200 mL dH2O  0.03 mM  

 

Ammonium Ferric Citrate  10 mL  0.12 g/200 mL dH2O  0.02 mM  

 

Na2EDTA·2H2O   10 mL  0.02 g/200 mL dH2O  0.002 mM  

 

Na2CO3    10 mL  0.4 g/200 mL dH2O  0.18 mM  

 

BG-11 Trace Metals Solution  1 mL     

 

 

 

 

BG-11 Trace Metals Solution 

 Component      Quantity per liter of 

medium 

 Stock Solution  

Concentration 

 

 

Final Concentration 

        

 

H3BO3 

 
 2.86 g  ----  46 µM 

 

MnCl2·4H2O 

 
 1.81 g  ----  9 µM 

 

ZnSO4·7H2O 

 
 0.22 g  ----  0.77 µM 

 

Na2MoO4·2H2O 

 
 0.39 g  ----  1.6 µM 

 

CuSO4·5H2O 

 
 0.079 g  ----  0.3 µM 

 
Co(NO3)2·6H2O  49.4 mg  ----  0.17 µM 

 

 

http://www.sbs.utexas.edu/utex/mediaDetail.aspx?mediaID=179
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 APPENDIX 3.BOLD’S BASAL MEDIA COMPOSITION     

Acidified Iron 

Stock  Solution 

    1 mL 
per liter 

of 

medium 

Molar 
Concentration 

in Final 

Medium¶  

FeSO4 • 7H2O 
 

4.98 g L-1 

dH2O 

  4.48 x 10-5 M 

H2SO4   1.0 mL     

Boron Stock 

Solution 

    1 mL 
per liter 

of 

medium 

  

H3BO3   11.42 g L-1 

dH2O 

  4.62 x 10-4 M 

Trace Metal 

Stock  Solution 

    1 mL 

per liter 
of 

medium 

  

ZnSO4 •7H2O   8.82 g L-1 
dH2O 

  7.67 x 10-5 M 

MnCl2 • 4H2O   1.44 g L-1 
dH2O 

  1.82 x 10-5 M 

MoO3   0.71 g L-1 
dH2O 

  1.23 x 10-5 M 

CuSO4 • 5H2O   1.57 g L-1 
dH2O 

  1.57 x 10-5 M 

Co(NO3)2 • 

6H20 

  0.49 g L-1 

dH2O 

  4.21 x 10-6 M 

Component 400 mL 
Stock 

Solution 

1 Liter 

Stock 

Solution 

quantity  
per liter 

of 

medium 

Molar 
Concentrati-

on in Final 

Medium¶ 

  Major 

Stock 

Solutions 

        

NaNO3 10 g L-1 

dH2O 

25.00 g L-1 

dH2O 

10 mL 2.94 x 10-

3M 

CaCl2 • 

2H2O 

1 g L-1 

dH2O 

2.50 g L-1 

dH2O 

10 mL 1.70 x 10-4 

M 

MgSO4 • 

7H2O 

3 g L-1 

dH2O 

7.50 g L-1 

dH2O 

10 mL 3.04 x 10-4 

M 

K2HPO4 3 g L-1 

dH2O 

7.50 g L-1 

dH2O 

10 mL 4.31 x 10-4 

M 

KH2PO4 7 g L-1 
dH2O 

17.50 g L-1 
dH2O 

10 mL 1.29 x 10-3 
M 

NaCl 1 g L-1 

dH2O 

2.50 g L-1 

dH2O 

10 mL 4.28 x 10-4 

M 

Alkaline 

EDTA 

Stock  

Solution 

    1 ml per 
liter of 

medium 

  

EDTA 
anhydrous 

  
50 g L-1 dH2O 

  4.28 x 10-4 
M 

KOH   
31 g L-1 

dH2O   1.38 x 10-3 

M 
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                       Batch A 

 

Sample                           Dilution factor                 Method 

N3                                          1:5                                  B 

FC2                                        1:1                                  A 

FC1                                        1:3                                  B 

D2                                          1:3                                  B 

Chlorella v.UTEX  259         1:2                                  B 

 

 

 

                     Batch B 

 

 

Sample                           Dilution factor                 Method 

N3                                          1:5                                  B 

FC2                                        1:1                                  A 

FC1                                        1:5                                  B 

D2                                          1:3                                  B 

Chlorella v.UTEX  259         1:3                                  B 

 

 

 

 

 

APPENDIX 4. SAMPLES DILUTIONS FOR HEMACYTOMETER 
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        Method A (4 squares)                                Method B (5 squares) 

APPENDIX 5. COUNTING PROCEDURES FOR HEMACYTOMETER READINGS 
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APPENDIX 6. FREEZE-DRYER PROGRAM 

 

Freeze 

Step # 1 2 

Tº (ºC) -40 -40 

Minutes 0 240 

 

Final Freeze 

Final Freeze(ºC) -44 

Extra Time 0 

Prim Vac (mTorr) 200 

 

Primary Dry 

Step # 1 2 3 4 5 6 

Tº (ºC) -20 -20 0 0 20 20 

Minutes 25 120 0 120 0 360 

Vacuum (mTorr) 100 100 100 100 100 100 

 

                 

Tº (ºC) 0 

Minutes 0 

Vacuum (mTorr) 200 

Final Setpoint (º C) 4 
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